Skip to main content

Wiring the Ear to the Brain: The Molecular Basis of Neurosensory Development, Differentiation, and Survival

  • Chapter
Development of the Inner Ear

Part of the book series: Springer Handbook of Auditory Research ((SHAR,volume 26))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adam J, Myat A, Le Roux I, Eddison M, Henrique D, Ish-Horowicz D, Lewis J (1998) Cell fate choices and the expression of Notch, Delta and Serrate homologues in the chick inner ear: parallels with Drosophila sense-organ development. Development 125:4645–4654.

    CAS  PubMed  Google Scholar 

  • Agerman K, Hjerling-Leffler J, Blanchard MP, Scarfone E, Canlon B, Nosrat C, Ernfors P (2003) BDNF gene replacement reveals multiple mechanisms for establishing neurotrophin specificity during sensory nervous system development. Development 130:1479–1491.

    Article  CAS  PubMed  Google Scholar 

  • Alvarez Y, Alonso MT, Vendrell V, Zelarayan LC, Chamero P, Theil T, Bosl MR, Kato S, Maconochie M, Riethmacher D, Schimmang T (2003) Requirements for FGF3 and FGF10 during inner ear formation. Development 130:6329–6338.

    CAS  PubMed  Google Scholar 

  • Begbie J, Graham A (2001) Integration between the epibranchial placodes and the hindbrain. Science 294:595–598.

    Article  CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math 1: an essential gene for the generation of inner ear hair cells. Science 284:1837–1841.

    Article  CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30:411–422.

    Article  CAS  PubMed  Google Scholar 

  • Bertrand N, Castro DS, Guillemot F (2002) Proneural genes and the specification of neural cell types. Nat Rev Neurosci 3:517–530.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi LM, Cohan CS (1991) Developmental regulation of a neurite-promoting factor influencing statoacoustic neurons. Brain Res Dev Brain Res 64:167–174.

    CAS  PubMed  Google Scholar 

  • Bianchi LM, Cohan CS (1993) Effects of the neurotrophins and CNTF on developing statoacoustic neurons: comparison with an otocyst-derived factor. Dev Biol 159:353–365.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi LM, Liu H (1999) Comparison of ephrin-A ligand and EphA receptor distribution in the developing inner ear. Anat Rec 254:127–134.

    Article  CAS  PubMed  Google Scholar 

  • Bianchi LM, Conover JC, Fritzsch B, DeChiara T, Lindsay RM, Yancopoulos GD (1996) Degeneration of vestibular neurons in late embryogenesis of both heterozygous and homozygous BDNF null mutant mice. Development 122:1965–1973.

    CAS  PubMed  Google Scholar 

  • Bober E, Rinkwitz S, Herbrand H (2003) Molecular basis of otic commitment and morphogenesis: a role for homeodomain-containing transcription factors and signaling molecules. Curr Top Dev Biol 57:151–175.

    CAS  PubMed  Google Scholar 

  • Borsani G, DeGrandi A, Ballabio A, Bulfone A, Bernard L, Banfi S, Gattuso C, Mariani M, Dixon M, Donnai D, Metcalfe K, Winter R, Robertson M, Axton R, Brown A, van Heyningen V, Hanson I (1999) EYA4, a novel vertebrate gene related to Drosophila eyes absent. Hum Mol Genet 8:11–23.

    Article  CAS  PubMed  Google Scholar 

  • Brent AE, Schweitzer R, Tabin CJ (2003). A somitic compartment of tendon progenitors. Cell 113:235–248.

    Article  CAS  PubMed  Google Scholar 

  • Brown S, Castelli-Gair Hombria J (2000) Drosophila grain encodes a GATA transcription factor required for cell rearrangement during morphogenesis. Development 127:4867–4876.

    CAS  PubMed  Google Scholar 

  • Brown ST, Martin K, Groves AK (2003) Molecular basis of inner ear induction. Curr Top Dev Biol 57:115–149.

    CAS  PubMed  Google Scholar 

  • Brunet JF, Pattyn A (2002) Phox2 genes—from patterning to connectivity. Curr Opin Genet Dev 12:435–440.

    Article  CAS  PubMed  Google Scholar 

  • Cai L, Hayes NL, Takahashi T, Caviness VS, Jr., Nowakowski RS (2002) Size distribution of retrovirally marked lineages matches prediction from population measurements of cell cycle behavior. J Neurosci Res 69:731–744.

    Article  CAS  PubMed  Google Scholar 

  • Cajal SR (1919) Accion neurotropica de los epitelios. Trab Lab Invest Biol 17:1–153.

    Google Scholar 

  • Caldwell JC, Eberl DF (2002) Towards a molecular understanding of Drosophila hearing. J Neurobiol 53:172–189.

    Article  CAS  PubMed  Google Scholar 

  • Calegari F, Huttner WB (2003) An inhibition of cyclin-dependent kinases that lengthens, but does not arrest, neuroepithelial cell cycle induces premature neurogenesis. J Cell Sci 116:4947–4955.

    Article  CAS  PubMed  Google Scholar 

  • Calof AL, Bonnin A, Crocker C, Kawauchi S, Murray RC, Shou J, Wu HH (2002) Progenitor cells of the olfactory receptor neuron lineage. Microsc Res Tech 58:176–188.

    Article  CAS  PubMed  Google Scholar 

  • Canzoniere D, Farioli-Vecchioli S, Conti F, Ciotti MT, Tata AM, Augusti-Tocco G, Mattei E, Lakshmana MK, Krizhanovsky V, Reeves SA, Giovannoni R, Castano F, Servadio A, Ben-Arie N, Tirone F (2004) Dual control of neurogenesis by PC3 through cell cycle inhibition and induction of Math1. J Neurosci 24:3355–3369.

    Article  CAS  PubMed  Google Scholar 

  • Carney PR, Silver J (1983) Studies on cell migration and axon guidance in the developing distal auditory system of the mouse. J Comp Neurol 215:359–369.

    Article  CAS  PubMed  Google Scholar 

  • Cau E, Casarosa S, Guillemot F (2002) Mash1 and Ngn1 control distinct steps of determination and differentiation in the olfactory sensory neuron lineage. Development 129:1871–1880.

    CAS  PubMed  Google Scholar 

  • Caviness VS, Jr., Goto T, Tarui T, Takahashi T, Bhide PG, Nowakowski RS (2003) Cell output, cell cycle duration and neuronal specification: a model of integrated mechanisms of the neocortical proliferative process. Cereb Cortex 13:592–598.

    Article  PubMed  Google Scholar 

  • Chang W, Nunes FD, De Jesus-Escobar JM, Harland R, Wu DK (1999) Ectopic noggin blocks sensory and nonsensory organ morphogenesis in the chicken inner ear. Dev Biol 216:369–381.

    Article  CAS  PubMed  Google Scholar 

  • Chang W, ten Dijke P, Wu DK (2002) BMP pathways are involved in otic capsule formation and epithelial-mesenchymal signaling in the developing chicken inner ear. Dev Biol 251:380–394.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: Uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129:2495–2505.

    Article  CAS  PubMed  Google Scholar 

  • Chen P, Zindy F, Abdala C, Liu F, Li X, Roussel MF, Segil N (2003) Progressive hearing loss in mice lacking the cyclin-dependent kinase inhibitor Ink4d. Nat Cell Biol 5:422–426.

    Article  CAS  PubMed  Google Scholar 

  • Cloutier JF, Giger RJ, Koentges G, Dulac C, Kolodkin AL, Ginty DD (2002) Neuropilin-2 mediates axonal fasciculation, zonal segregation, but not axonal convergence, of primary accessory olfactory neurons. Neuron 33:877–892.

    Article  CAS  PubMed  Google Scholar 

  • Coppola V, Kucera J, Palko ME, Martinez-De Velasco J, Lyons WE, Fritzsch B, Tessarollo L (2001) Dissection of NT3 functions in vivo by gene replacement strategy. Development 128:4315–4327.

    CAS  PubMed  Google Scholar 

  • Cowan CA, Yokoyama N, Bianchi LM, Henkemeyer M, Fritzsch B (2000) EphB2 guides axons at the midline and is necessary for normal vestibular function. Neuron 26:417–430.

    CAS  PubMed  Google Scholar 

  • Davies D, Holley MC (2002) Differential expression of alpha3 and alpha6 integrins in the developing mouse inner ear. J Comp Neurol 445:122–132.

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ, Shen W, Heanue TA, Mardon G (1999) Mouse Dach, a homologue of Drosophila dachshund, is expressed in the developing retina, brain and limbs. Dev Genes Evol 209:526–536.

    Article  CAS  PubMed  Google Scholar 

  • Davis RJ, Shen W, Sandler YI, Heanue TA, Mardon G (2001) Characterization of mouse Dach2, a homologue of Drosophila dachshund. Mech Dev 102:169–179.

    Article  CAS  PubMed  Google Scholar 

  • Davis RL (2003) Gradients of neurotrophins, ion channels, and tuning in the cochlea. Neuroscientist 9:311–316.

    Article  CAS  PubMed  Google Scholar 

  • Echteler SM, Nofsinger YC (2000) Development of ganglion cell topography in the postnatal cochlea. J Comp Neurol 425:436–446.

    Article  CAS  PubMed  Google Scholar 

  • Ernfors P, Van De Water T, Loring J, Jaenisch R (1995) Complementary roles of BDNF and NT-3 in vestibular and auditory development. Neuron 14:1153–1164.

    Article  CAS  PubMed  Google Scholar 

  • Farinas I, Jones KR, Backus C, Wang XY, Reichardt LF (1994) Severe sensory and sympathetic deficits in mice lacking neurotrophin-3. Nature 369:658–6180.

    CAS  PubMed  Google Scholar 

  • Farinas I, Jones KR, Tessarollo L, Vigers AJ, Huang E, Kirstein M, de Caprona DC, Coppola V, Backus C, Reichardt LF, Fritzsch B (2001) Spatial shaping of cochlear innervation by temporally regulated neurotrophin expression. J Neurosci 21:6170–6180.

    CAS  PubMed  Google Scholar 

  • Fekete DM, Wu DK (2002) Revisiting cell fate specification in the inner ear. Curr Opin Neurobiol 12:35–42.

    Article  CAS  PubMed  Google Scholar 

  • Ferguson KL, Vanderluit JL, Hebert JM, McIntosh WC, Tibbo E, MacLaurin JG, Park DS, Wallace VA, Vooijs M, McConnell SK, Slack RS (2002) Telencephalon-specific Rb knockouts reveal enhanced neurogenesis, survival and abnormal cortical development. EMBO J 21:3337–3346.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (2001a) The morphology and function of fish ears. In: Ostrander G (ed) The Laboratory Fish. Exeter: Academic Press, pp. 250–259.

    Google Scholar 

  • Fritzsch B (2001b) The cellular organization of the fish ear. In: Ostrander G (ed) The Laboratory Fish. Exeter: Academic Press, pp. 480–487.

    Google Scholar 

  • Fritzsch B (2003) Development of inner ear afferent connections: forming primary neurons and connecting them to the developing sensory epithelia. Brain Res Bull 60:423–433.

    PubMed  Google Scholar 

  • Fritzsch B, Beisel KW (2001) Evolution and development of the vertebrate ear. Brain Res Bull 55:711–721.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW (2003) Molecular conservation and novelties in vertebrate ear development. Curr Top Dev Biol 57:1–44.

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW (2004) Keeping sensory cells and evolving neurons to connect them to the brain: molecular conservation and novelties in vertebrate ear development. Brain Behav Evol 64:182–197.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Wake MH (1988) The inner ear of gymnophione amphibians and its nerve supply: a comparative study of regressive events in a complex sensory system. Zoomorphol 108:210–217.

    Google Scholar 

  • Fritzsch B, Silos-Santiago I, Smeyne R, Fagan AM, Barbacid M (1995) Reduction and loss of inner ear innervation in trkB and trkC receptor knockout mice: a whole mount DiI and scanning electron microscopic analysis. Audit Neurosci 1:401–417.

    Google Scholar 

  • Fritzsch B, Farinas I, Reichardt LF (1997a) Lack of neurotrophin 3 causes losses of both classes of spiral ganglion neurons in the cochlea in a region-specific fashion. J Neurosci 17:6213–6225.

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Sarai PA, Barbacid M, Silos-Santiago I (1997b) Mice with a targeted disruption of the neurotrophin receptor trkB lose their gustatory ganglion cells early but do develop taste buds. Int J Dev Neurosci 15:563–576.

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Barald K, Lomax M (1998) Early embryology of the vertebrate ear. In: Rubel EW, Popper AN, Fay RR (eds), Development of the Auditory System. New York: Springer-Verlag, pp. 80–145.

    Google Scholar 

  • Fritzsch B, Pirvola U, Ylikoski J (1999) Making and breaking the innervation of the ear: neurotrophic support during ear development and its clinical implications. Cell Tissue Res 295:369–382.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Bermingham NA (2000) Developmental evolutionary biology of the vertebrate ear: conserving mechanoelectric transduction and developmental pathways in diverging morphologies. NeuroReport 11:R35–44.

    CAS  PubMed  Google Scholar 

  • Fritzsch B, Signore M, Simeone A (2001a) Otx1 null mutant mice show partial segregation of sensory epithelia comparable to lamprey ears. Dev Genes Evol 211:388–396.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Silos-Santiago I, Farinas I, Jones K (2001b) Neurotrophins and neurotrophin receptors involved in supporting afferent inner ear innervation. In: Mocchetti I (ed), The Neurotrophins. Johnson City, TN: Salzburger and Graham.

    Google Scholar 

  • Fritzsch B, Beisel KW, Jones K, Farinas I, Maklad A, Lee J, Reichardt LF (2002) Development and evolution of inner ear sensory epithelia and their innervation. J Neurobiol 53:143–156.

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Tessarollo L, Coppola E, Reichardt LF (2003) Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Prog Brain Res 146:265–278.

    Google Scholar 

  • Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, Wang VY (2005) Atoh1 null mutants show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 233:570–583.

    Article  CAS  PubMed  Google Scholar 

  • Gao WQ (2003) Hair cell development in higher vertebrates. Curr Top Dev Biol 57:293–319.

    CAS  PubMed  Google Scholar 

  • Gerlach LM, Hutson MR, Germiller JA, Nguyen-Luu D, Victor JC, Barald KF (2000) Addition of the BMP4 antagonist, noggin, disrupts avian inner ear development. Development 127:45–54.

    CAS  PubMed  Google Scholar 

  • Gilmour DT, Maischein HM, Nusslein-Volhard C (2002) Migration and function of a glial subtype in the vertebrate peripheral nervous system. Neuron 34:577–588.

    Article  CAS  PubMed  Google Scholar 

  • Goodyear RJ, Richardson GP (2002) Extracellular matrices associated with the apical surfaces of sensory epithelia in the inner ear: molecular and structural diversity. J Neurobiol 53:212–227.

    Article  CAS  PubMed  Google Scholar 

  • Gowan K, Helms AW, Hunsaker TL, Collisson T, Ebert PJ, Odom R, Johnson JE (2001) Crossinhibitory activities of Ngn1 and Math1 allow specification of distinct dorsal interneurons. Neuron 31:219–232.

    Article  CAS  PubMed  Google Scholar 

  • Graham V, Khudyakov J, Ellis P, Pevny L (2003) SOX2 functions to maintain neural progenitor identity. Neuron 39:749–765.

    Article  CAS  PubMed  Google Scholar 

  • Gu C, Rodriguez ER, Reimert DV, Shu T, Fritzsch B, Richards LJ, Kolodkin AL, Ginty DD (2003). Neuropilin-1 conveys semaphorin and VEGF signaling during neural and cardiovascular development. Dev Cell 5:45–57.

    Article  CAS  PubMed  Google Scholar 

  • Hanson IM (2001) Mammalian homologues of the Drosophila eye specification genes. Semin Cell Dev Biol 12:475–484.

    Article  CAS  PubMed  Google Scholar 

  • Hashino E, Dolnick RY, Cohan CS (1999) Developing vestibular ganglion neurons switch trophic sensitivity from BDNF to GDNF after target innervation. J Neurobiol 38:414–427.

    Article  CAS  PubMed  Google Scholar 

  • Huang EJ, Liu W, Fritzsch B, Bianchi LM, Reichardt LF, Xiang M (2001) Brn3a is a transcriptional regulator of soma size, target field innervation and axon pathfinding of inner ear sensory neurons. Development 128:2421–2432.

    CAS  PubMed  Google Scholar 

  • Jones KR, Farinas I, Backus C, Reichardt LF (1994) Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–999.

    Article  CAS  PubMed  Google Scholar 

  • Karis A, Pata I, van Doorninck JH, Grosveld F, de Zeeuw CI, de Caprona D, Fritzsch B (2001) Transcription factor GATA-3 alters pathway selection of olivocochlear neurons and affects morphogenesis of the ear. J Comp Neurol 429:615–630.

    Article  CAS  PubMed  Google Scholar 

  • Kawamoto K, Ishimoto S, Minoda R, Brough DE, Raphael Y (2003) Math1 gene transfer generates new cochlear hair cells in mature guinea pigs in vivo. J Neurosci 23:4395–4400.

    CAS  PubMed  Google Scholar 

  • Kim WY, Fritzsch B, Serls A, Bakel LA, Huang EJ, Reichardt LF, Barth DS, Lee JE (2001). NeuroD-null mice are deaf due to a severe loss of the inner ear sensory neurons during development. Development 128:417–426.

    CAS  PubMed  Google Scholar 

  • Lawoko-Kerali G, Rivolta MN, Holley M (2002) Expression of the transcription factors GATA3 and Pax2 during development of the mammalian inner ear. J Comp Neurol 442:378–391.

    Article  CAS  PubMed  Google Scholar 

  • Lee CS, Fan CM (2001) Embryonic expression patterns of the mouse and chick Gas1 genes. Mech Dev 101:293–297.

    Article  CAS  PubMed  Google Scholar 

  • Lee JE (1997) Basic helix-loop-helix genes in neural development. Curr Opin Neurobiol 7:13–20.

    Article  PubMed  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The veretebrate inner ear. Boca Raton: CRC Press.

    Google Scholar 

  • Li H, Liu H, Heller S (2003a) Pluripotent stem cells from the adult mouse inner ear. Nat Med 9:1293–1299.

    Article  CAS  PubMed  Google Scholar 

  • Li H, Roblin G, Liu H, Heller S (2003b) Generation of hair cells by stepwise differentiation of embryonic stem cells. Proc Natl Acad Sci USA 100:13495–13500.

    CAS  PubMed  Google Scholar 

  • Liebl DJ, Tessarollo L, Palko ME, Parada LF (1997) Absence of sensory neurons before target innervation in brain-derived neurotrophic factor-, neurotrophin3-, and trkC-deficient embryonic mice. J Neurosci 17:9113–9127.

    CAS  PubMed  Google Scholar 

  • Liu M, Pereira FA, Price SD, Chu MJ, Shope C, Himes D, Eatock RA, Brownell WE, Lysakowski A, Tsai MJ (2000) Essential role of BETA2/NeuroD1 in development of the vestibular and auditory systems. Genes Dev 14:2839–2854.

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Liu C, Yamada Y, Fan CM (2002) Growth arrest specific gene 1 acts as a regionspecific mediator of the Fgf10/Fgf8 regulatory loop in the limb. Development 129: 5289–5300.

    Article  CAS  PubMed  Google Scholar 

  • Lorente de No R (1933) Anatomy of the eighth nerve: the central projections of the nerve endings of the internal ear. Laryngoscope 43:1–38.

    Google Scholar 

  • Ma Q, Kintner C, Anderson DJ (1996) Identification of neurogenin, a vertebrate neuronal determination gene. Cell 87:43–52.

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Chen Z, del Barco Barrantes I, de la Pompa JL, Anderson DJ (1998) neurogenin1 is essential for the determination of neuronal precursors for proximal cranial sensory ganglia. Neuron 20:469–482.

    Article  CAS  PubMed  Google Scholar 

  • Ma Q, Anderson DJ, Fritzsch B (2000) Neurogenin 1 null mutant ears develop fewer, morphologically normal hair cells in smaller sensory epithelia devoid of innervation. J Assoc Res Otolaryngol 1:129–143.

    CAS  PubMed  Google Scholar 

  • Maklad A, Fritzsch B (1999) Incomplete segregation of endorgan-specific vestibular ganglion cells in mice and rats. J Vestib Res 9:387–399.

    CAS  PubMed  Google Scholar 

  • Maklad A, Fritzsch B (2002) The developmental segregation of posterior crista and saccular vestibular fibers in mice: a carbocyanine tracer study using confocal microscopy. Dev Brain Res 135:1–17.

    Article  CAS  Google Scholar 

  • Maklad A, Fritzsch B (2003) Development of vestibular afferent projections into the hindbrain and their central targets. Brain Res Bull 60:497–510.

    Article  PubMed  Google Scholar 

  • Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, et al. (2005) Smaller inner ear sensory epithelia in Neurog1 null mice are related to earlier hair cell terminal mitosis. Dev Dyn (in revision).

    Google Scholar 

  • Megason SG, McMahon AP (2002) A mitogen gradient of dorsal midline Wnts organizes growth in the CNS. Development 129:2087–2098.

    CAS  PubMed  Google Scholar 

  • Merscher S, Funke B, Epstein JA, Heyer J, Puech A, Lu MM, Xavier RJ, Demay MB, Russell RG, Factor S, Tokooya K, Jore BS, Lopez M, Pandita RK, Lia M, Carrion D, Xu H, Schorle H, Kobler JB, Scambler P, Wynshaw-Boris A, Skoultchi AI, Morrow BE, Kucherlapati R (2001) TBX1 is responsible for cardiovascular defects in velocardiofacial/DiGeorge syndrome. Cell 104:619–629.

    Article  CAS  PubMed  Google Scholar 

  • Miyazaki N, Furuyama T, Takeda N, Inoue T, Kubo T, Inagaki S (1999) Expression of mouse semaphorin H mRNA in the inner ear of mouse fetuses. Neurosci Lett 261: 127–129.

    Article  CAS  PubMed  Google Scholar 

  • Morris JK, Lin W, Hauser C, Marchuk Y, Getman D, Lee KF (1999) Rescue of the cardiac defect in ErbB2 mutant mice reveals essential roles of ErbB2 in peripheral nervous system development. Neuron 23:273–283.

    Article  CAS  PubMed  Google Scholar 

  • Morsli H, Choo D, Ryan A, Johnson R, Wu DK (1998) Development of the mouse inner ear and origin of its sensory organs. J Neurosci 18:3327–3335.

    CAS  PubMed  Google Scholar 

  • Murakami Y, Suto F, Shimizu M, Shinoda T, Kameyama T, Fujisawa H (2001) Differential expression of plexin-A subfamily members in the mouse nervous system. Dev Dyn 220:246–258.

    Article  CAS  PubMed  Google Scholar 

  • Noramly S, Grainger RM (2002) Determination of the embryonic inner ear. J Neurobiol 53:100–128.

    Article  CAS  PubMed  Google Scholar 

  • Norris HW (1892) Studies on the development of the ear in Amblystoma. I. Development of the auditory vesicle. J Morphol 7:23–34.

    Article  Google Scholar 

  • Ohnuma S, Harris WA (2003) Neurogenesis and the cell cycle. Neuron 40:199–208.

    Article  CAS  PubMed  Google Scholar 

  • Pasterkamp RJ, Verhaagen J (2001) Emerging roles for semaphorins in neural regeneration. Brain Res Brain Res Rev 35:36–54.

    Article  CAS  PubMed  Google Scholar 

  • Pauley S, Wright TJ, Pirvola U, Ornitz D, Beisel K, Fritzsch B (2003) Expression and function of FGF10 in mammalian inner ear development. Dev Dyn 227:203–215.

    Article  CAS  PubMed  Google Scholar 

  • Pfister M, Toth T, Thiele H, Haack B, Blin N, Zenner HP, Sziklai I, Murnberg P, Kupka S (2002) A 4-bp Insertion in the eya-homologous region (eyaHR) of EYA4 causes hearing impairment in a Hungarian family linked to DFNA10. Mol Med 8: 607–611.

    CAS  PubMed  Google Scholar 

  • Pirvola U, Ylikoski J, Palgi J, Lehtonen E, Arumae U, Saarma M (1992) Brain-derived neurotrophic factor and neurotrophin 3 mRNAs in the peripheral target fields of developing inner ear ganglia. Proc Natl Acad Sci USA 89:9915–9919.

    CAS  PubMed  Google Scholar 

  • Pirvola U, Ylikoski J, Trokovic R, Hebert J, McConnell S, Partanen J (2002) FGFR1 is required for the development of the auditory sensory epithelium. Neuron 35:671.

    Article  CAS  PubMed  Google Scholar 

  • Postigo A, Calella AM, Fritzsch B, Knipper M, Katz D, Eilers A, Schimmang T, Lewin GR, Klein R, Minichiello L (2002) Distinct requirements for TrkB and TrkC signaling in target innervation by sensory neurons. Genes Dev 16:633–645.

    Article  CAS  PubMed  Google Scholar 

  • Qian Y, Fritzsch B, Shirasawa S, Chen CL, Choi Y, Ma Q (2001) Formation of brainstem (nor)adrenergic centers and first-order relay visceral sensory neurons is dependent on homeodomain protein Rnx/Tlx3. Genes Dev 15:2533–2545.

    Article  CAS  PubMed  Google Scholar 

  • Raft S, Nowotschin S, Liao J, Morrow BE (2004) Suppression of neural fate and control of inner ear morphogenesis by Tbx1. Development 131:1801–1812.

    Article  CAS  PubMed  Google Scholar 

  • Rask-Andersen H, Boström M, Gerdin B, Kinnefors A, Nyberg G. Engstrand T, Miller JM, Lindholm D (2005) Regeneration of human auditory nerve in vitro/in video demonstration of neural progenitor cells in adult human and guinea pig spiral ganglion. Hear Res 203:180–191.

    CAS  PubMed  Google Scholar 

  • Riccomagno MM, Martinu L, Mulheisen M, Wu DK, Epstein DJ (2002) Specification of the mammalian cochlea is dependent on Sonic hedgehog. Genes Dev 16:2365–2378.

    Article  CAS  PubMed  Google Scholar 

  • Rubel EW, Fritzsch B (2002) Auditory system development:primary auditory neurons and their targets. Annu Rev Neurosci 25:51–101.

    Article  CAS  PubMed  Google Scholar 

  • Ruben RJ (1967) Development of the inner ear of the mouse:a radioautographic study of terminal mitoses. Acta Otolaryngol (Suppl) 220:1–44.

    Google Scholar 

  • Sarasin P, Sarasin F (1892) Ãœber das Gehörorgan der Caeciliiden. Anat Anz 7:7:812–815

    Google Scholar 

  • Schimmang T, Minichiello L, Vazquez E, San Jose I, Giraldez F, Klein R, Represa J (1995) Developing inner ear sensory neurons require TrkB and TrkC receptors for innervation of their peripheral targets. Development 121:3381–3389.

    CAS  PubMed  Google Scholar 

  • Schimmang T, Tan J, Muller M, Zimmermann U, Rohbock K, Kopschall I, Limberger A, Minichiello L, Knipper M (2003) Lack of Bdnf and TrkB signalling in the postnatal cochlea leads to a spatial reshaping of innervation along the tonotopic axis and hearing loss. Development 130:4741–4750.

    Article  CAS  PubMed  Google Scholar 

  • Silos-Santiago I, Fagan AM, Garber M, Fritzsch B, Barbacid M (1997) Severe sensory deficits but normal CNS development in newborn mice lacking TrkB and TrkC tyrosine protein kinase receptors. Eur J Neurosci 9:2045–2056.

    CAS  PubMed  Google Scholar 

  • Stankovic KM, Corfas G (2003) Real-time quantitative RT-PCR for low-abundance transcripts in the inner ear: analysis of neurotrophic factor expression. Hear Res 185:97–108.

    Article  CAS  PubMed  Google Scholar 

  • Streit A (2002) Extensive cell movements accompany formation of the otic placode. Dev Biol 249:237–254.

    Article  CAS  PubMed  Google Scholar 

  • Suto F, Murakami Y, Nakamura F, Goshima Y, Fujisawa H (2003) Identification and characterization of a novel mouse plexin, plexin-A4. Mech Dev 120:385–396.

    Article  CAS  PubMed  Google Scholar 

  • Tessarollo L, Coppola V, Fritzsch B (2004) NT-3 replacement with brain-derived neurotrophic factor redirects vestibular nerve fibers to the cochlea. J Neurosci 24:2575–2584.

    Article  CAS  PubMed  Google Scholar 

  • Tessier-Lavigne M, Goodman CS (1996) The molecular biology of axon guidance. Science 274:1123–1133.

    Article  CAS  PubMed  Google Scholar 

  • Van Esch H, Groenen P, Nesbit MA, Schuffenhauer S, Lichtner P, Vanderlinden G, Harding B, Beetz R, Bilous RW, Holdaway I, Shaw NJ, Fryns JP, Van de Ven W, Thakker RV, Devriendt K (2000) GATA3 haplo-insufficiency causes human HDR syndrome. Nature 406:419–422.

    PubMed  Google Scholar 

  • Vitelli F, Viola A, Morishima M, Pramparo T, Baldini A, Lindsay E (2003) TBX1 is required for inner ear morphogenesis. Hum Mol Genet 12:2041–2048.

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr Biol 12:1611–1616.

    CAS  PubMed  Google Scholar 

  • Wayne S, Robertson NG, DeClau F, Chen N, Verhoeven K, Prasad S, Tranebjarg L, Morton CC, Ryan AF, Van Camp G, Smith RJ (2001) Mutations in the transcriptional activator EYA4 cause late-onset deafness at the DFNA10 locus. Hum Mol Genet 10: 195–200.

    Article  CAS  PubMed  Google Scholar 

  • Wheeler EF, Bothwell M, Schecterson LC, von Bartheld CS (1994) Expression of BDNF and NT-3 mRNA in hair cells of the organ of Corti: quantitative analysis in developing rats. Hear Res 73:46–56.

    Article  CAS  PubMed  Google Scholar 

  • Wright TJ, Mansour SL (2003) Fgf3 and Fgf10 are required for mouse otic placode induction. Development 130:3379–3390.

    Article  CAS  PubMed  Google Scholar 

  • Wu DK, Oh SH (1996) Sensory organ generation in the chick inner ear. J Neurosci 16: 6454–6462.

    CAS  PubMed  Google Scholar 

  • Wu HH, Ivkovic S, Murray RC, Jaramillo S, Lyons KM, Johnson JE, Calof AL (2003) Autoregulation of neurogenesis by GDF11. Neuron 37:197–207.

    Article  CAS  PubMed  Google Scholar 

  • Xiang M, Gao WQ, Hasson T, Shin JJ (1998) Requirement for Brn-3c in maturation and survival, but not in fate determination of inner ear hair cells. Development 125:3935–3946.

    CAS  PubMed  Google Scholar 

  • Xiang M, Maklad A, Pirvola U, Fritzsch B (2003) Brn3c null mutant mice show longterm, incomplete retention of some afferent inner ear innervation. BMC Neurosci 4: 2.

    Article  PubMed  Google Scholar 

  • Xu PX, Adams J, Peters H, Brown MC, Heaney S, Maas R (1999) Eya1-deficient mice lack ears and kidneys and show abnormal apoptosis of organ primordia. Nat Genet 23:113–117.

    CAS  PubMed  Google Scholar 

  • Xu PX, Zheng W, Huang L, Maire P, Laclef C, Silvius D (2003) Six1 is required for the early organogenesis of mammalian kidney. Development 130:3085–3094.

    CAS  PubMed  Google Scholar 

  • Yang Q, Bermingham NA, Finegold MJ, Zoghbi HY (2001) Requirement of Math1 for secretory cell lineage commitment in the mouse intestine. Science 294:2155–2158.

    Article  CAS  PubMed  Google Scholar 

  • Zhou Q, Anderson DJ (2002) The bHLH transcription factors OLIG2 and OLIG1 couple neuronal and glial subtype specification. Cell 109:61–73.

    Article  CAS  PubMed  Google Scholar 

  • Zine A (2003) Molecular mechanisms that regulate auditory hair-cell differentiation in the mammalian cochlea. Mol Neurobiol 27:223–238.

    CAS  PubMed  Google Scholar 

  • Zine A, Aubert A, Qiu J, Therianos S, Guillemot F, Kageyama R, de Ribaupierre F (2001) Hes1 and Hes5 activities are required for the normal development of the hair cells in the mammalian inner ear. J Neurosci 21:4712–4720.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Pauley, S., Matei, V., Beisel, K.W., Fritzsch, B. (2005). Wiring the Ear to the Brain: The Molecular Basis of Neurosensory Development, Differentiation, and Survival. In: Kelley, M.W., Wu, D.K., Popper, A.N., Fay, R.R. (eds) Development of the Inner Ear. Springer Handbook of Auditory Research, vol 26. Springer, New York, NY. https://doi.org/10.1007/0-387-30678-1_4

Download citation

Publish with us

Policies and ethics