Skip to main content

Variable Neighborhood Search for Extremal Graphs 14: The AutoGraphiX 2 System

  • Chapter
Book cover Global Optimization

Summary

The AutoGraphiX (AGX) system for computer assisted or, for some of its functions, fully automated graph theory was developed at GERAD, Montreal since 1997. We report here on a new version (AGX 2) of that system. It contains many enhancements, as well as a new function for automated proof of simple propositions. Among other results, AGX 2 led to several hundred new conjectures, ranking from easy ones, proved automatically, to others requiring longer unassisted or partially assisted proofs, to open ones. Many examples are given, illustrating AGX 2’s functions and the results obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. M. Aouchiche, G. Caporossi, and P. Hansen. Variable neighborhood search for extremal graphs 8: Variations on graffiti 105. Congr. Numer., 148:129–144, 2001.

    MathSciNet  MATH  Google Scholar 

  2. K. Appel and W. Haken. Every planar map is four colorable. Part I. Discharging. Illinois J. Math., 21:429–490, 1977.

    MathSciNet  MATH  Google Scholar 

  3. K. Appel and W. Haken. Every planar map is four colorable. Part II. Reducibility. Illinois J. Math., 21:491–567, 1977.

    MathSciNet  MATH  Google Scholar 

  4. K. Appel and W. Haken. The four color proof suffices. Mathematical Intelligencer, 8:10–20, 1986.

    Article  MathSciNet  MATH  Google Scholar 

  5. K. Appel and W. Haken. Every planar map is four colorable. Contemp. Math., 98:1–741, 1989.

    MathSciNet  Google Scholar 

  6. S. Belhaiza, N. M. M. Abreu, P. Hansen, and C. S. Oliveira. Variable neighborhood search for extremal graphs 11: Bounds on algebraic connectivity. In D. Avis, A. Hertz and O. Marcotte (editors) Graph Theory and Combinatorial Optimization, Dordrecht: Kluwer (2005, to appear.

    Google Scholar 

  7. G. Caporossi, D. Cvetković, I. Gutman, and P. Hansen. Variable neighborhood search for extremal graphs 2: Finding graphs with extremal energy. Journal of Chemical Information and Computer Sciences, 39:984–996, 1999.

    Article  Google Scholar 

  8. G. Caporossi, I. Gutman, and P. Hansen. Variable neighborhood search for extremal graphs 4: Chemical trees with extremal connectivity index. Computers and Chemistry, 23:469–477, 1999.

    Article  Google Scholar 

  9. G. Caporossi, I. Gutman, P. Hansen, and L. Pavlović. Graphs with maximum connectivity index. Computational Biology and Chemistry, 27:85–90, 2003.

    Article  Google Scholar 

  10. G. Caporossi and P. Hansen. Variable neighborhood search for extremal graphs 1 The autographix system. Discrete Math., 212, no. 1–2:29–44, 2000.

    Article  MathSciNet  MATH  Google Scholar 

  11. G. Caporossi and P. Hansen. Variable neighborhood search for extremal graphs 5 Three ways to automate finding conjectures. Discrete Math., 276 no. 1–3:81–94, 2004.

    Article  MathSciNet  MATH  Google Scholar 

  12. S. Colton. Automated theory formation in pure mathematics. Springer: London, 2002.

    Google Scholar 

  13. S. Colton. Private communication. 2004.

    Google Scholar 

  14. D. Cvetković and I. Pevac. Man-Machine Theorem Proving in Graph Theory. Artificial Intelligence, 35:1–23, 1988.

    Article  MathSciNet  MATH  Google Scholar 

  15. D. Cvetković and S. Simić. Graph theoretical results obtained by the support of the expert system “graph”-an extended survey. in P. Fowler, P. Hansen, M. Janowitz, and F. Roberts (editors). Graphs and discovery. DIM ACS Series in Discrete Math. and Theoretical Computer Science, AMS, forthcoming, 2005 [24]}.

    Google Scholar 

  16. D. Cvetković, S. Simić, G. Caporossi, and P. Hansen. Variable neighborhood search for extremal graphs 3: On the largest eigenvalue of color-constrained trees. Linear and Multilinear Algebra, 49 no. 2:143–160, 2001.

    MathSciNet  MATH  Google Scholar 

  17. G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Algorithms for drawing graphs: an annotated bibliography. Computational Geometry: Theory and Applications 4, 5:235–282, 1994.

    Google Scholar 

  18. G. di Battista, P. Eades, R. Tamassia, and I.G. Tollis. Graph drawing: Algorithms for the visualization of graphs. Prentice Hall, 1999.

    Google Scholar 

  19. S._L. Epstein. On the discovery of mathematical theorems. In Proceedings of the Tenth International Joint Conference on Articial Intelligence, pages 194–197, 1987.

    Google Scholar 

  20. S._L. Epstein. Learning and Discovery: One System’s Search for Mathematical Knowledge. Comput. Intell., 4:42–53, 1988.

    Google Scholar 

  21. S._L. Epstein and N. S. Sridharan. Knowledge Presentation for Mathematical Discovery: Three Experiments in Graph Theory. J. Applied Intelligence, 1:7–33, 1991.

    Article  MATH  Google Scholar 

  22. S. Fajtlowicz. On conjectures of graffiti. Discrete Math., 72 no. 1–3:113–118, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  23. S. Fajtlowicz. Written on the Wall. version 09-2000 (regularity updated file accessible via e-mail from clarson@math.uh.edu), 2000.

    Google Scholar 

  24. S. Fajtlowicz, P. Fowler, P. Hansen, M. Janowitz, and F. Roberts (editors). Graphs and discovery. DIM ACS Series in Discrete Math. and Theoretical Computer Science, AMS, forthcoming, 2005.

    Google Scholar 

  25. P._W. Fowler, P. Hansen, G. Caporossi, and A. Soncini. Variable neighborhood search for extremal graphs 7: Polyenes with maximum homo-lumo gap. Chemical Physics Letters, 342:105–112, 2001.

    Article  Google Scholar 

  26. I. Gutman, O. Miljković, G. Caporossi, and P. Hansen. Alkanes with small and large randić connectivity indices. Chemical Physics Letters, 306:366–372, 1999.

    Article  Google Scholar 

  27. P. Hansen. How far is, should and could be conjecture-making in graph theory an automated process? in P. Fowler, P. Hansen, M. Janowitz, and F. Roberts (editors). Graphs and discovery. DIM ACS Series in Discrete Math. and Theoretical Computer Science, AMS, forthcoming, 2005 [24]}

    Google Scholar 

  28. P. Hansen, M. Aouchiche, G. Caporossi, H. Mélot, and D. Stevanovic. What forms do interesting conjectures have in graph theory? In P. Fowler, P. Hansen, M. Janowitz, and F. Roberts (editors). Graphs and discovery. DIM ACS Series in Discrete Math. and Theoretical Computer Science, AMS, forthcoming, 2005 [24]}.

    Google Scholar 

  29. P. Hansen and H. Mélot. Variable neighborhood search for extremal graphs 9: Bounding the irregularity of a graph. in P. Fowler, P. Hansen, M. Janowitz, and F. Roberts (editors). Graphs and discovery. DIM ACS Series in Discrete Math. and Theoretical Computer Science, AMS, forthcoming, 2005 [24]}

    Google Scholar 

  30. P. Hansen and H. Mélot. Variable neighborhood search for extremal graphs 6: Analyzing bounds for the connectivity index. J. of Chem. Inf. Comp. Sc., 43(1):1–14, Jan–Feb 2003.

    Article  Google Scholar 

  31. P. Hansen, H. Mélot, and I. Gutman. Variable neighborhood search for extremal graphs 12: a note on the variance of bounded degrees in graphs. Match, to appear, 2005.

    Google Scholar 

  32. P. Hansen and N. Mladenović. Variable neighborhood search: Principles and applications. European J. Oper. Res., 130 no. 3:449–467, 2001.

    Article  MathSciNet  MATH  Google Scholar 

  33. H. Hong. Bounds of eigenvalues of graphs. Discrete Math., 123:65–74, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  34. D. Knuth. The Stanford graphbase: a platform for combinatorial computing. Addison-Wesley, Reading, Massachusetts, 1993.

    Google Scholar 

  35. K. Mehlhorn and S. Nähger. Leda: A platform for combinatorial and geometric computing. Communications of the ACM, 38(l):96–102, 1995.

    Article  Google Scholar 

  36. N. Mladenović and P. Hansen. Variable neighborhood search. Comput. Oper. Res., 24 no. 11:1097–1100, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  37. E._A. Nordhaus and J. W. Gaddum. On complementary graphs. Amer. Math. Monthly, 63:175–177, 1956.

    Article  MathSciNet  MATH  Google Scholar 

  38. T. Pisanski and A. Zitnik. Interactive conjecturing with vega. in P. Fowler, P. Hansen, M. Janowitz, and F. Roberts (editors). Graphs and discovery. DIM ACS Series in Discrete Math. and Theoretical Computer Science, AMS, forthcoming, 2005 [24]}.

    Google Scholar 

  39. N. Robertson, D. Sanders, P. Seymour, and R. Thomas. The four-color theorem. Journal of Combinatorial Theory, Ser. B, 70:2–44, 1997.

    Article  MathSciNet  MATH  Google Scholar 

  40. S. Skiena. Implementing discrete mathematics: Combinatorics and graph theory with mathematica. Addison-Wesley, 1990.

    Google Scholar 

  41. Vega. A system for manipulating discrete mathematical structures. Project Homepage: http://vega.ijp.si/.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Aouchiche, M. et al. (2006). Variable Neighborhood Search for Extremal Graphs 14: The AutoGraphiX 2 System. In: Liberti, L., Maculan, N. (eds) Global Optimization. Nonconvex Optimization and Its Applications, vol 84. Springer, Boston, MA. https://doi.org/10.1007/0-387-30528-9_10

Download citation

Publish with us

Policies and ethics