Skip to main content

Posttranslational Modifications of p53: Upstream Signaling Pathways

  • Chapter
The p53 Tumor Suppressor Pathway and Cancer

Part of the book series: Protein Reviews ((PRON,volume 2))

  • 1260 Accesses

Abstract

The p53 tumor suppressor is a tetrameric transcription factor that is posttranslational modified at <20 different sites by phosphorylation, acetylation, or sumoylation in response to various cellular stress conditions. Specific posttranslational modifications, or groups of modifications, that result from the activation of different stress-induced signaling pathways are thought to modulate p53 activity to regulate cell fate by inducing cell cycle arrest, apoptosis, or cellular senescence. Here we review recent progress in characterizing the upstream signaling pathways whose activation in response to various genotoxic and nongenotoxic stresses result in p53 posttranslational modifications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abraham, R. T. (2001). Cell cycle checkpoint signaling through the ATM and ATR kinases. Genes Dev 15:2177–2196.

    Article  PubMed  CAS  Google Scholar 

  • Abraham, R. T. (2003). Checkpoint signaling: Epigenetic events sound the DNA strand-breaks alarm to the ATM protein kinase. Bioessays 25:627–630.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, J., and Prives, C. (2001). The C-terminus of p53: the more you learn the less you know. Nat Struct Biol 8:730–732.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, J., Urist, M., and Prives, C. (2003). Questioning the role of checkpoint kinase 2 in the p53 DNA damage response. J Biol Chem 278:20480–20489.

    Article  PubMed  CAS  Google Scholar 

  • Ahn, J.-Y., Schwarz, J. K., Piwnica-Worms, H., and Canman, C. E. (2000). Threonine 68 phosphorylation by ataxia telangiectasia mutated is required for efficient activation of Chk2 in response to ionizing radiation. Cancer Res 60:5934–5936.

    PubMed  CAS  Google Scholar 

  • Andegeko, Y., Moyal, L., Mitelman, L., Tsarfaty, I., Shiloh, Y., and Rotman, G. (2001). Nuclear retention of ATM at sites of DNA double strand breaks. J Biol Chem 276:38224–38230.

    PubMed  CAS  Google Scholar 

  • Anderson, C.W., and Appella, E. (2003). Signaling to the p53 tumor suppressor through pathways activated by genotoxic and non-genotoxic stresses. In R. A. Bradshaw and E. Dennis (eds), Handbook of Cell Signaling. Academic Press, New York, pp. 237–247.

    Google Scholar 

  • Anderson, C.W., and Lees-Miller, S. P. (1992). The nuclear serine/threonine protein kinase DNA-PK. Crit Rev Eukaryot Gene Expr 2:283–314.

    PubMed  CAS  Google Scholar 

  • Anderson, M. E., Woelker, B., Reed, M., Wang, P., and Tegtmeyer, P. (1997). Reciprocal interference between the sequence-specific core and nonspecific C-terminal DNA binding domains of p53: implications for regulation. Mol Cell Biol 17:6255–6264.

    PubMed  CAS  Google Scholar 

  • Appella, E., and Anderson, C. W. (2001). Post-translational modifications and activation of p53 by genotoxic stresses. Eur J Biochem 268:2764–2772.

    Article  PubMed  CAS  Google Scholar 

  • Ayed, A., Mulder, F. A. A., Yi, G.-S., Lu, Y., Kay, L. E., and Arrowsmith, C.H. (2001). Latent and active p53 are identical in conformation. Nat Struct Biol 8:756–760.

    Article  PubMed  CAS  Google Scholar 

  • Bakkenist, C. J., and Kastan, M. B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Banin, S., Moyal, L., Shieh, S.-Y., Taya, Y., Anderson, C.W., Chessa, L., Smorodinsky, N.I., Prives, C., Reiss, Y., Shiloh, Y., and Ziv, Y. (1998). Enhanced phosphorylation of p53 by ATM in response to DNA damage. Science 281:1674–1677.

    Article  PubMed  CAS  Google Scholar 

  • Bech-Otschir, D., Kraft, R., Huang, X., Henklein, P., Kapelari, B., Pollmann, C., and Dubiel, W. (2001). COP9 signalosome-specific phosphorylation targets p53 to degradation by the ubiquitin system. EMBO J 20:1630–1639.

    Article  PubMed  CAS  Google Scholar 

  • Bernstein, C., and Bernstein, H. (1991). Aging, Sex, and DNA Repair. Academic Press, San Diego, CA.

    Google Scholar 

  • Bonner, W. M. (2003). Low-dose radiation: Thresholds, bystander effects, and adaptive responses. Proc Natl Acad Sci USA 100:4973–4975.

    Article  PubMed  CAS  Google Scholar 

  • Bosotti, R., Isacchi, A., and Sonnhammer, E. L. L. (2000). FAT: a novel domain in PIK-related kinases. Trends Biochem Sci 25:225–227.

    Article  PubMed  CAS  Google Scholar 

  • Brown, E. J., and Baltimore, D. (2003). Essential and dispensable roles of ATR in cell cycle arrest and genome maintenance. Genes Dev 17:615–628.

    Article  PubMed  CAS  Google Scholar 

  • Bulavin, D.V., Amundson, S. A., and Fornace, Jr., A. J. (2002a). p38 and Chk1 kinases: different conductors for the G2/M checkpoint symphony. Curr Opin Genet Dev 12:92–97.

    Article  PubMed  CAS  Google Scholar 

  • Bulavin, D. V., Demidov, O. N., Saito, S., Kauraniemi, P., Phillips, C., Amundson, S. A., Ambrosino, C., Sauter, G., Nebreda, A. R., Anderson, C. W., Kallioniemi, A., Fornace, Jr., A. J., and Appella, E. (2002b). Amplification of PPM1D in human tumors abrogates p53 tumor-suppressor activity. Nat Genet 31:210–215.

    Article  PubMed  CAS  Google Scholar 

  • Bulavin, D. V., Saito, S., Hollander, M. C., Sakaguchi, K., Anderson, C. W., Appella, E., and Fornace Jr., A. J. (1999). Phosphorylation of human p53 by p38 kinase coordinates N-terminal phosphorylation and apoptosis in response to UV radiation. EMBO J 18:6845–6854.

    Article  PubMed  CAS  Google Scholar 

  • Burma, S., Chen, B. P., Murphy, M., Kurimasa, A., and Chen, D. J. (2001). ATM phosphorylates histone H2AX in response to DNA double-strand breaks. J Biol Chem 276:42462–42467.

    Article  PubMed  CAS  Google Scholar 

  • Canman, C. E. (2003). Checkpoint mediators: relaying signals from DNA strand breaks. Curr Biol 13:R488–R490.

    Article  PubMed  CAS  Google Scholar 

  • Canman, C. E., Lim, D.-S., Cimprich, K. A., Taya, Y., Tamai, K., Sakaguchi, K., Appella, E., Kastan, M. B., and Siliciano, J. D. (1998). Activation of the ATM kinase by ionizing radiation and phosphorylation of p53. Science 281:1677–1679.

    Article  PubMed  CAS  Google Scholar 

  • Chao, C., Saito, S., Anderson, C. W., Appella, E., and Xu, Y. (2000). Phosphorylation of murine p53 at Ser-18 regulates the p53 responses to DNA damage. Proc Natl Acad Sci USA 97:11936–11941.

    Article  PubMed  CAS  Google Scholar 

  • Chehab, N. H., Malikzay, A., Appel, M., and Halazonetis, T. D. (2000). Chk2/hCds1 functions as a DNA damage checkpoint in G1 by stabilizing p53. Genes Dev 14:278–288.

    PubMed  CAS  Google Scholar 

  • Chehab, N. H., Malikzay, A., Stavridi, E. S., and Halazonetis, T. D. (1999). Phosphorylation of Ser-20 mediates stabilization of human p53 in response to DNA damage. Proc Natl Acad Sci USA 96:13777–13782.

    Article  PubMed  CAS  Google Scholar 

  • Cho, Y., Gorina, S., Jeffrey, P. D., and Pavletich, N. P. (1994). Crystal structure of a p53 tumor suppressor-DNA complex: understanding tumorigenic mutations. Science 265:346–355.

    Article  PubMed  CAS  Google Scholar 

  • Cline, S. D., and Hanawalt, P. C. (2003). Who’s on first in the cellular response to DNA damage? Nat Rev Mol Cell Biol 4:361–373.

    Article  PubMed  CAS  Google Scholar 

  • Clore, G. M., Ernst, J., Clubb, R., Omichinski, J. G., Kennedy, W. M. P., Sakaguchi, K., Appella, E., and Gronenborn, A. M. (1995). Refined solution structure of the oligomerization domain of the tumour suppressor p53. Nat Struct Biol 2:321–333.

    Article  PubMed  CAS  Google Scholar 

  • Cortez, D., Guntuku, S., Qin, J., and Elledge, S. J. (2001). ATR and ATRIP: partners in checkpoint signaling. Science 294:1713–1716.

    Article  PubMed  CAS  Google Scholar 

  • Craig, A. L., Bray, S. E., Finlan, L. E., Kernohan, N. M., and Hupp, T. R. (2003). Signaling to p53: The use of phospho-specific antibodies to probe for in vivo kinase activation. Methods Mol Biol 234:171–202.

    PubMed  CAS  Google Scholar 

  • D’Amours, D., and Jackson, S. P. (2002). The Mre11 complex: at the crossroads of DNA repair and checkpoint signalling. Nat Rev Mol Cell Biol 3:317–327.

    Article  PubMed  CAS  Google Scholar 

  • Denning, G., Jamieson, L., Maquat, L. E., Thompson, E. A., and Fields, A. P. (2001). Cloning of a novel phosphatidylinositol kinase-related kinase: characterization of the human SMG-1 RNA surveillance protein. J Biol Chem 276:22709–22714.

    Article  PubMed  CAS  Google Scholar 

  • D’Orazi, G., Cecchinelli, B., Bruno, T., Manni, I., Higashimoto, Y., Saito, S., Gostissa, M., Coen, S., Marchetti, A., Del Sal, G., Piaggio, G., Fanciulli, M., Appella, E., and Soddu, S. (2002). Homeodomain-interacting protein kinase-2 phosphorylates p53 at Ser 46 and mediates apoptosis. Nat Cell Biol 4:11–19.

    Article  PubMed  CAS  Google Scholar 

  • Dornan, D., and Hupp, T. R. (2001). Inhibition of p53-dependent transcription by BOX-I phospho-peptide mimetics that bind to p300. EMBO Rep 2:139–144.

    Article  PubMed  CAS  Google Scholar 

  • Dumaz, N., and Meek, D. W. (1999). Serine 15 phosphorylation stimulates p53 transactivation but does not directly influence interaction with HDM2. EMBO J 18:7002–7010.

    Article  PubMed  CAS  Google Scholar 

  • Espinosa, J. M., and Emerson, B. M. (2001). Transcriptional regulation by p53 through intrinsic DNA/chromatin binding and site-directed cofactor recruitment. Mol Cell 8:57–69.

    Article  PubMed  CAS  Google Scholar 

  • Fei, P., and el-Deiry, W.S. (2003). P53 and radiation responses. Oncogene 22:5774–5783.

    Article  PubMed  CAS  Google Scholar 

  • Fiscella, M., Zhang, H., Fan, S., Sakaguchi, K., Shen, S., Mercer, W. E., Vande Woude, G. F., O’Connor, P. M., and Appella, E. (1997). Wip1, a novel human protein phosphatase that is induced in response to ionizing radiation in a p53-dependent manner. Proc Natl Acad Sci. USA 94:6048–6053.

    Article  PubMed  CAS  Google Scholar 

  • Gu, W., and Roeder, R. G. (1997). Activation of p53 sequence-specific DNA binding by acetylation of the p53 C-terminal domain. Cell 90:595–606.

    Article  PubMed  CAS  Google Scholar 

  • Hammond, E. M., Denko, N. C., Dorie, M. J., Abraham, R. T., and Giaccia, A. J. (2002). Hypoxia links ATR and p53 through replication arrest. Mol Cell Biol 22:1834–1843.

    Article  PubMed  CAS  Google Scholar 

  • Hao, M., Lowy, A.M., Kapoor, M., Deffie, A., Liu, G., and Lozano, G. (1996). Mutation of phosphoserine 389 affects p53 function in vivo. J Biol Chem 271:29380–29385.

    Article  PubMed  CAS  Google Scholar 

  • Higashimoto, Y., Saito, S., Tong, X.-H., Hong, A., Sakaguchi, K., Appella, E., and Anderson, C.W. (2000). Human p53 is phosphorylated on serines 6 and 9 in response to DNA damage-inducing agents. J Biol Chem 275:23199–23203.

    Article  PubMed  CAS  Google Scholar 

  • Hofmann, T. G., Möller, A., Sirma, H., Zentgraf, H., Taya, Y., Dröge, W., Will, H., and Schmitz, M. L. (2002). Regulation of p53 activity by its interaction with homeodomain-interacting protein kinase-2. Nat Cell Biol 4:1–10.

    Article  PubMed  CAS  Google Scholar 

  • Hofseth, L.J., Saito, S., Hussain, S.P., Espey, M.G., Miranda, K.M., Araki, Y., Jhappan, C., Higashimoto, Y., He, P., Linke, S.P., Quezado, M.M., Zurer, I., Rotter, V., Wink, D.A., Appella, E., and Harris, C.C. (2003). Nitric oxide-induced cellular stress and p53 activation in chronic inflammation. Proc Natl Acad Sci USA 100:143–148.

    Article  PubMed  CAS  Google Scholar 

  • Hupp, T. R., and Lane, D. P. (1994). Regulation of the cryptic sequence-specific DNA-binding function of p53 by protein kinases. Cold Spring Harb Symp Quant Biol 59:195–206.

    PubMed  CAS  Google Scholar 

  • Hupp, T. R., Meek, D.W., Midgley, C. A., and Lane, D. P. (1992). Regulation of the specific DNA binding function of p53. Cell 71:875–886.

    Article  PubMed  CAS  Google Scholar 

  • Itahana, K., Dimri, G., and Campisi, J. (2001). Regulation of cellular senescence by p53. Eur J Biochem 268:2784–2791.

    Article  PubMed  CAS  Google Scholar 

  • Jallepalli, P. V., Leaguer, C., Vogelstein, B., and Benz, F. (2003). The Chk2 tumor suppressor is not required for p53 responses in human cancer cells. J Biol Chem 278:20475–20479.

    Article  PubMed  CAS  Google Scholar 

  • Jeffrey, P. D., Gorina, S., and Pavletich, N. P. (1995). Crystal structure of the tetramerization domain of the p53 tumor suppressor at 1.7 angstroms. Science 267:1498–1502.

    Article  PubMed  CAS  Google Scholar 

  • Jimenez, G. F., Bryntesson, F., Torres-Arzayus, M. I., Priestley, A., Beeche, M., Saito, S., Sakaguchi, K., Appella, E., Jeggo, P. A., Taccioli, G. E., Wahl, G. M., and Hubank, M. (1999). DNA-dependent protein kinase is not required for the p53-dependent response to DNA damage. Nature 400:81–83.

    Article  PubMed  CAS  Google Scholar 

  • Kaeser, M.D., and Iggo, R.D. (2002). Chromatin immunoprecipitation analysis fails to support the latency model for regulation of p53 DNA binding activity in vivo. Proc Natl Acad Sci USA 99:95–100.

    Article  PubMed  CAS  Google Scholar 

  • Kaku, S., Iwahashi, Y., Kuraishi, A., Albor, A., Yamagishi, T., Nakaike, S., and Kulesz-Martin, M. (2001). Binding to the naturally occurring double p53 binding site of the Mdm2 promoter alleviates the requirement for p53 C-terminal activation. Nucleic Acids Res 29:1989–1993.

    Article  PubMed  CAS  Google Scholar 

  • Kapoor, M., and Lozano, G. (1998). Functional activation of p53 via phosphorylation following DNA damage by UV but not γ radiation. Proc Natl Acad Sci USA 95:2834–2837.

    Article  PubMed  CAS  Google Scholar 

  • Kim, E., and Deppert, W. (2003). The complex interactions of p53 with target DNA: we learn as we go. Biochem Cell Biol 81:141–150.

    Article  PubMed  CAS  Google Scholar 

  • Kishi, H., Nakagawa, K., Matsumoto, M., Suga, M., Ando, M., Taya, Y., and Yamaizumi, M. (2001). Osmotic shock induces G1 arrest through p53 phosphorylation at Ser33 by activated p38MAPK without phosphorylation at Ser15 and Ser20. J Biol Chem 276:39115–39122.

    Article  PubMed  CAS  Google Scholar 

  • Klein, C., Planker, E., Diercks, T., Kessler, H., Künkele, K.-P., Lang, K., Hansen, S., and Schwaiger, M. (2001). NMR spectroscopy reveals the solution dimerization interface of p53 core domains bound to their consensus DNA. J Biol Chem 276:49020–49027.

    Article  PubMed  CAS  Google Scholar 

  • Ko, L. J., and Prives, C. (1996). p53: puzzle and paradigm. Genes Dev 10:1054–1072.

    Article  PubMed  CAS  Google Scholar 

  • Kozlov, S., Gueven, N., Keating, K., Ramsay, J., and Lavin, M. F. (2003). ATP activates ataxia-telangiectasia mutated (ATM) in vitro. Importance of autophosphorylation. J Biol Chem 278:9309–9317.

    Article  PubMed  CAS  Google Scholar 

  • Kussie, P. H., Gorina, S., Marechal, V., Elenbaas, B., Moreau, J., Levine, A. J., and Pavletich, N. P. (1996). Structure of the MDM2 oncoprotein bound to the p53 tumor suppressor transactivation domain. Science 274:948–953.

    Article  PubMed  CAS  Google Scholar 

  • Lambert, P. F., Kashanchi, F., Radonovich, M. F., Shiekhattar, R., and Brady, J. N. (1998). Phosphorylation of p53 serine 15 increases interaction with CBP. J Biol Chem 273:33048–33053.

    Article  PubMed  CAS  Google Scholar 

  • Lees-Miller, S. P., Sakaguchi, K., Ullrich, S. J., Appella, E., and Anderson, C.W. (1992). Human DNA-activated protein kinase phosphorylates serines 15 and 37 in the amino-terminal transactivation domain of human p53. Mol Cell Biol 12:5041–5049.

    PubMed  CAS  Google Scholar 

  • Li, J., Yang, Y., Peng, Y., Austin, R. J., Van Eyndhoven, W. G., Nguyen, K. C. Q., Gabriele, T., McCurrach, M. E., Marks, J. R., Hoey, T., Lowe, S. W., and Powers, S. (2002). Oncogenic properties of PPM1D located within a breast cancer amplification epicenter at 17q23. Nat Genet 31:133–134.

    Article  PubMed  CAS  Google Scholar 

  • Lu, H., Taya, Y., Ikeda, M., and Levine, A. J. (1998). Ultraviolet radiation, but not radiation or etoposideinduced DNA damage, results in the phosphorylation of the murine p53 protein at serine-389. Proc Natl Acad Sci USA 95:6399–6402.

    Article  PubMed  CAS  Google Scholar 

  • Mazur, S. J., Sakaguchi, K., Appella, E., Wang, X. W., Harris, C. C., and Bohr, V. A. (1999). Preferential binding of tumor suppressor p53 to positively or negatively supercoiled DNA involves the C-terminal domain. J Mol Biol 292:241–249.

    Article  PubMed  CAS  Google Scholar 

  • Melchionna, R., Chen, X.-B., Blasina, A., and McGowan, C. H. (2000). Threonine 68 is required for radiation-induced phosphorylation and activation of Cds1. Nat Cell Biol 2:762–765.

    Article  PubMed  CAS  Google Scholar 

  • Melchior, F., and Hengst, L. (2002). SUMO-1 and p53. Cell Cycle 1:245–249.

    PubMed  CAS  Google Scholar 

  • Mihara, M., Erster, S., Zaika, A., Petrenko, O., Chittenden, T., Pancoska, P., and Moll, U. M. (2003). p53 has a direct apoptogenic role at the mitochondria. Mol Cell 11:577–590.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura, S., Roth, J. A., and Mukhopadhyay, T. (2002). Multiple lysine mutations in the C-terminus of p53 make it resistant to degradation mediated by MDM2 but not by human papillomavirus E6 and induce growth inhibition in MDM2-overexpressing cells. Oncogene 21:2605–2610.

    Article  PubMed  CAS  Google Scholar 

  • Nielsen, O. (2003). COP9 signalosome: a provider of DNA building blocks. Curr Biol 13:R565–R567.

    Article  PubMed  CAS  Google Scholar 

  • Oda, K., Arakawa, H., Tanaka, T., Matsuda, K., Tanikawa, C., Mori, T., Nishimori, H., Tamai, K., Tokino, T., Nakamura, Y., and Taya, Y. (2000). p53AIP1, a potential mediator of p53-dependent apoptosis, and its regulation by Ser-46-phosphorylated p53. Cell 102:849–862.

    Article  PubMed  CAS  Google Scholar 

  • Oren, M. (2003). Decision making by p53: life, death and cancer. Cell Death Differ 10:431–442.

    Article  PubMed  CAS  Google Scholar 

  • Palecek, E., Vlk, D., Stanková, V., Brázda, V., Vojtesek, B., Hupp, T. R., Schaper, A., and Jovin, T. M. (1997). Tumor suppressor protein p53 binds preferentially to supercoiled DNA. Oncogene 15:2201–2209.

    Article  PubMed  CAS  Google Scholar 

  • Paull, T. T., Rogakou, E. P., Yamazaki, V., Kirchgessner, C. U., Gellert, M., and Bonner, W. M. (2000). A critical role for histone H2AX in recruitment of repair factors to nuclear foci after DNA damage. Curr Biol 10:886–895.

    Article  PubMed  CAS  Google Scholar 

  • Petrini, J. H. J., and Stracker, T. H. (2003). The cellular response to DNA double-strand breaks: defining the sensors and mediators. Trends Cell Biol 13:458–462.

    Article  PubMed  CAS  Google Scholar 

  • Prives, C., and Manley, J. L. (2001). Why is p53 acetylated? Cell 107:815–818.

    Article  PubMed  CAS  Google Scholar 

  • Redon, C., Pilch, D., Rogakou, E., Sedelnikova, O., Newrock, K., and Bonner, W. (2002). Histone H2A variants H2AX and H2AZ. Curr Opin Genet Dev 12:162–169.

    Article  PubMed  CAS  Google Scholar 

  • Rippin, T. M., Freund, S. M. V., Veprintsev, D. B., and Fersht, A. R. (2002). Recognition of DNA by p53 core domain and location of intermolecular contacts of cooperative binding. J Mol Biol 319:351–358.

    Article  PubMed  CAS  Google Scholar 

  • Saito, S., Goodarzi, A. A., Higashimoto, Y., Noda, Y., Lees-Miller, S. P., Appella, E., and Anderson, C. W. (2002). ATM mediates phosphorylation at multiple p53 sites, including Ser46, in response to ionizing radiation. J Biol Chem 277:12491–12494.

    Article  PubMed  CAS  Google Scholar 

  • Saito, S., Yamaguchi, H., Higashimoto, Y., Chao, C., Xu, Y., Fornace, Jr., A. J., Appella, E., and Anderson, C. W. (2003). Phosphorylation site interdependence of human p53 post-translational modifications in response to stress. J Biol Chem 278:37536–37544.

    Article  PubMed  CAS  Google Scholar 

  • Sakaguchi, K., Herrera, J. E., Saito, S., Miki, T., Bustin, M., Vassilev, A., Anderson, C. W., and Appella, E. (1998). DNA damage activates p53 through a phosphorylation-acetylation cascade. Genes Dev 12:2831–2841.

    PubMed  CAS  Google Scholar 

  • Sakaguchi, K., Sakamoto, H., Lewis, M. S., Anderson, C. W., Erickson, J. W., Appella, E., and Xie, D. (1997). Phosphorylation of serine 392 stabilizes the tetramer formation of tumor suppressor protein p53. Biochemistry 36:10117–10124.

    Article  PubMed  CAS  Google Scholar 

  • Sax, J. K., and el-Deiry, W. S. (2003). p53 downstream targets and chemosensitivity. Cell Death Differ 10:413–417.

    Article  PubMed  CAS  Google Scholar 

  • Schon, O., Friedler, A., Bycroft, M., Freund, S. M. V., and Fersht, A. (2002). Molecular mechanism of the interaction between MDM2 and p53. J Mol Biol 323:491–501.

    Article  PubMed  CAS  Google Scholar 

  • Schultz, L. B., Chehab, N. H., Malikzay, A., and Halazonetis, T. D. (2000). p53 binding protein 1 (53BP1) is an early participant in the cellular response to DNA double-strand breaks. J Cell Biol 151:1381–1390.

    Article  PubMed  CAS  Google Scholar 

  • Shieh, S.-Y., Ahn, J., Tamai, K., Taya, Y., and Prives, C. (2000). The human homologs of checkpoint kinases Chk1 and Cds1 (Chk2) phosphorylate p53 at multiple DNA damage-inducible sites. Genes Dev 14:289–300.

    PubMed  CAS  Google Scholar 

  • Shieh, S.-Y., Ikeda, M., Taya, Y., and Prives, C. (1997). DNA damage-induced phosphorylation of p53 alleviates inhibition by MDM2. Cell 91:325–334.

    Article  PubMed  CAS  Google Scholar 

  • Shiloh, Y. (2003). ATM and related protein kinases: safeguarding genome integrity. Nat Rev Cancer 3:155–168.

    Article  PubMed  CAS  Google Scholar 

  • Siliciano, J. D., Canman, C. E., Taya, Y., Sakaguchi, K., Appella, E., and Kastan, M. B. (1997). DNA damage induces phosphorylation of the amino terminus of p53. Genes Dev 11:3471–3481.

    PubMed  CAS  Google Scholar 

  • Smith, G. C. M., Cary, R. B., Lakin, N. D., Hann, B. C., Teo, S.-H., Chen, D. J., and Jackson S. P. (1999). Purification and DNA binding properties of the ataxia-telangiectasia gene product ATM. Proc Natl Acad Sci USA 96:11134–11139.

    Article  PubMed  CAS  Google Scholar 

  • Smith, M. L., and Seo, Y. R. (2002). p53 regulation of DNA excision repair pathways. Mutagenesis 17:149–156.

    Article  PubMed  CAS  Google Scholar 

  • Sutherland, B. M., Bennett, P. V., Sidorkina, O., and Laval, J. (2000). Clustered DNA damages induced in isolated DNA and in human cells by low doses of ionizing radiation. Proc Natl Acad Sci USA 97:103–108.

    Article  PubMed  CAS  Google Scholar 

  • Suzuki, K., Kodama, S., and Watanabe, M. (1999). Recruitment of ATM protein to double strand DNA irradiated with ionizing radiation. J Biol Chem 274:25571–25575.

    Article  PubMed  CAS  Google Scholar 

  • Takai, H., Naka, K., Okada, Y., Watanabe, M., Harada, N., Saito, S., Anderson, C.W., Appella, E., Nakanishi, M., Suzuki, H., Nagashima, K., Sawa, H., Ikeda, K., and Motoyama, N. (2002). Chk2-deficient mice exhibit radioresistance and defective p53-mediated transcription. EMBO J 21:5195–5205.

    Article  PubMed  CAS  Google Scholar 

  • Takekawa, M., Adachi, M., Nakahata, A., Nakayama, I., Itoh, F., Tsukuda, H., Taya, Y., and Imai, K. (2000). p53-inducible Wip1 phosphatase mediates a negative feedback regulation of p38 MAPK-p53 signaling in response to UV radiation. EMBO J 19:6517–6526.

    Article  PubMed  CAS  Google Scholar 

  • Tibbetts, R. S., Brumbaugh, K. M., Williams, J. M., Sarkaria, J. N., Cliby, W. A., Shieh, S.-Y., Taya, Y., Prives, C., and Abraham, R. T. (1999). A role for ATR in the DNA damage-induced phosphorylation of p53. Genes Dev 13:152–157.

    PubMed  CAS  Google Scholar 

  • Tibbetts, R. S., Cortez, D., Brumbaugh, K. M., Scully, R., Livingston, D., Elledge, S. J., and Abraham, R. T. (2000). Functional interactions between BRCA1 and the checkpoint kinase ATR during genotoxic stress. Genes Dev 14:2989–3002.

    Article  PubMed  CAS  Google Scholar 

  • Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., and Shiloh, Y. (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J 22:5612–5621.

    Article  PubMed  CAS  Google Scholar 

  • Vousden, K. H., and Lu, X. (2002). Live or let die: the cell’s response to p53. Nat Rev Cancer 2:594–604.

    Article  PubMed  CAS  Google Scholar 

  • Wahl, G.M., and Carr, A.M. (2001). The evolution of diverse biological responses to DNA damage: insights from yeast and p53. Nat Cell Biol 3:E277–E286.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., and Prives, C. (1995). Increased and altered DNA binding of human p53 by S and G2/M but not G1 cyclin-dependent kinases. Nature 376:88–91.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y.-H., Tsay, Y.-G., Tan, B.C.-M., Lo, W.-Y., and Lee, S.-C. (2003). Identification and characterization of a novel p300-mediated p53 acetylation site, lysine 305. J Biol Chem 278:25568–25576.

    Article  PubMed  CAS  Google Scholar 

  • Waterman, M. J. F., Stavridi, E. S., Waterman, J. L. F., and Halazonetis, T. D. (1998). ATM-dependent activation of p53 involves dephosphorylation and association with 14-3-3 proteins. Nat Genet 19:175–178.

    Article  PubMed  CAS  Google Scholar 

  • Wu, Z., Earle, J., Saito, S., Anderson, C. W., Appella, E., and Xu, Y. (2002). Mutation of mouse p53 Ser23 and the response to DNA damage. Mol Cell Biol 22:2441–2449.

    Article  PubMed  CAS  Google Scholar 

  • Yamashita, A., Ohnishi, T., Kashima, I., Taya, Y., and Ohno, S. (2001). Human SMG-1, a novel phosphatidylinositol 3-kinase-related protein kinase, associates with components of the mRNA surveillance complex and is involved in the regulation of nonsense-mediated mRNA decay. Genes Dev 15:2215–2228.

    Article  PubMed  CAS  Google Scholar 

  • Yarosh, D. B., Cruz, Jr., P. D., Dougherty, I., Bizios, N., Kibitel, J., Goodtzova, K., Both, D., Goldfarb, S., Green, B., and Brown, D. (2000). FRAP DNA-dependent protein kinase mediates a late signal transduced from ultraviolet-induced DNA damage. J Invest Dermatol 114:1005–1010.

    Article  PubMed  CAS  Google Scholar 

  • Zhang, Y., and Xiong, Y. (2001). A p53 amino-terminal nuclear export signal inhibited by DNA damage-induced phosphorylation. Science 292:1910–1915.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, H., and Piwnica-Worms, H. (2001). ATR-mediated checkpoint pathways regulate phosphorylation and activation of human Chk1. Mol Cell Biol 21:4129–4139.

    Google Scholar 

  • Zilfou, J. T., Hoffman, W. H., Sank, M., George, D. L., and Murphy, M. (2001). The corepressor mSin3a interacts with the proline-rich domain of p53 and protects p53 from proteasome-mediated degradation. Mol Cell Biol 21:3974–3985.

    Article  PubMed  CAS  Google Scholar 

  • Zou, L., Cortez, D., and Elledge, S. J. (2002). Regulation of ATR substrate selection by Rad17-dependent loading of Rad9 complexes onto chromatin. Genes Dev 16:198–208.

    Article  PubMed  CAS  Google Scholar 

  • Zou, L., and Elledge, S. J. (2003). Sensing DNA damage through ATRIP recognition of RPA-ssDNA complexes. Science 300:1542–1548.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science Business Media, Inc.

About this chapter

Cite this chapter

Anderson, C.W., Appella, E. (2005). Posttranslational Modifications of p53: Upstream Signaling Pathways. In: Zambetti, G.P. (eds) The p53 Tumor Suppressor Pathway and Cancer. Protein Reviews, vol 2. Springer, Boston, MA. https://doi.org/10.1007/0-387-30127-5_5

Download citation

Publish with us

Policies and ethics