Skip to main content

Fractal Geometry on Hyperbolic Manifolds

  • Chapter
Non-Euclidean Geometries

Part of the book series: Mathematics and Its Applications ((MAIA,volume 581))

Abstract

In this survey we give a report on some recent results obtained in the studies of hyperbolic manifolds by means of fractal geometry. Emphasis has been put on results derived in the quantitative and qualitative fractal analysis of long term geodesic dynamics on hyperbolic manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. W. Abikoff, ‘Kleinian groups-geometrically finite and geometrically perverse’, Contemp. Math. 74 (1988) 1–50.

    MATH  MathSciNet  Google Scholar 

  2. L.V. Ahlfors, Möbius transformations in several dimensions, University of Minnesota, Lecture Notes, 1981.

    Google Scholar 

  3. P. Albuquerque, ‘Patterson-Sullivan measures in higher rank symmetric spaces’, C.R. Acad. Sci. Paris Sér I. Math. 324 (1997) 427–432.

    MATH  MathSciNet  Google Scholar 

  4. A.F. Beardon, ‘Inequalities for certain Fuchsian groups’, Acta Math. 127 (1971) 221–258.

    Article  MATH  MathSciNet  Google Scholar 

  5. A.F. Beardon, The geometry of discrete groups, Springer Verlag, New York, 1983.

    MATH  Google Scholar 

  6. A.F. Beardon, B. Maskit, ‘Limit points of Kleinian groups and finite sided fundamental polyhedra’, Acta Math. 132 (1974) 1–12.

    Article  MathSciNet  MATH  Google Scholar 

  7. C.J. Bishop, ‘On a theorem of Beardon and Maskit’, Ann. Acad. Sci. Fenn. 21 (1996) 383–388.

    MATH  MathSciNet  Google Scholar 

  8. C.J. Bishop, P.W. Jones, ‘Hausdorff dimension and Kleinian groups’, Acta Math. 56 (1997) 1–39.

    Article  MathSciNet  Google Scholar 

  9. C.J. Bishop, P.W. Jones, ‘The law of iterated logarithm for Kleinian groups’, Contemp. Math. 211 (1997) 17–50.

    MathSciNet  Google Scholar 

  10. W. Bosma, H. Jager, F. Wiedijk, ‘Some metrical observations on the approximation by continued fractions’, Indag. Math. 45 (1983) 281–299.

    MathSciNet  MATH  Google Scholar 

  11. B.H. Bowditch, ‘Geometrical finiteness for hyperbolic groups’, J. Functional Analysis 113 (1993) 245–317.

    Article  MATH  MathSciNet  Google Scholar 

  12. R. Brooks, ‘The fundamental group and the spectrum of the Laplacian’, Comm. Math. Helv. 56 (1981) 581–598.

    MATH  MathSciNet  Google Scholar 

  13. R. Brooks, ‘The bottom of the spectrum of a Riemannian covering’, J. Reine Angew. Math. 357 (1985) 101–114.

    MATH  MathSciNet  Google Scholar 

  14. M. Burger, R.D. Canary, ‘A lower bound on λ0 for geometrically finite hyperbolic n-manifolds’, J. Reine Angew. Math. 454 (1994) 37–57.

    MathSciNet  MATH  Google Scholar 

  15. R.D. Canary, ‘On the Laplacian and the geometry of hyperbolic three-manifolds’, J. Diff. Geom. 36 (1992) 349–367.

    MATH  MathSciNet  Google Scholar 

  16. M. Coornaert, ‘Sur les groupes proprement discontinus d’isométries des espaces hyperboliques au sens de Gromov’, Dissertation, Univ. Louis Pasteur, Strasbourg, 1990.

    MATH  Google Scholar 

  17. M. Coornaert, ‘Measures de Patterson-Sullivan sur le bord d’un espace hyperboliques au sens de Gromov’, Pacific J. Math. 159 (1993) 241–270.

    MATH  MathSciNet  Google Scholar 

  18. K. Corlette, ‘Hausdorff dimensions of limit sets I’, Invent. Math. 102 (1990) 521–542.

    Article  MATH  MathSciNet  Google Scholar 

  19. K. Corlette, A. Iozzi, ‘Limit sets of discrete groups of isometries of exotic hyperbolic spaces’, Trans. Amer. Math. Soc. 351,4 (1999) 1507–1530.

    Article  MathSciNet  MATH  Google Scholar 

  20. H.S.M. Coxeter, Introduction into geometry, Wiley Classic Library, J. Wiley, (sec. ed.) 1989.

    Google Scholar 

  21. D.D. Cutler, ‘A review of the theory and estimation of fractal dimension’, in Nonlinear Time Series and Chaos, Vol. I: Dimension Estimation and Models, ed. H. Tong, World Scientific, Singapore, 1993.

    Google Scholar 

  22. S.G. Dani, ‘Bounded orbits of flows on homogeneous spaces’, Comment. Math. Helv. 61, no. 4 (1986) page 636–660.

    MATH  MathSciNet  Google Scholar 

  23. K.J. Falconer, Fractal geometry, mathematical foundations and applications, J. Wiley, 1990.

    Google Scholar 

  24. K.J. Falconer, Techniques in fractal geometry, J. Wiley, 1997.

    Google Scholar 

  25. K.H. Falk, B.O. Stratmann, ‘Remarks on Hausdorff dimensions for transient limit sets of Kleinian groups’, Math. Gottingensis 05 (2003) 1–16 (preprint).

    Google Scholar 

  26. J.L. Fernández, M.V. Melián, ‘Bounded geodesics of Riemann surfaces and hyperbolic manifolds’, Trans. Amer. Math. Soc. 347, no. 9 (1995) 3533–3549.

    Article  MathSciNet  MATH  Google Scholar 

  27. L. Greenberg, ‘Fundamental polyhedra for Kleinian groups’, Ann. of Maths. 84 (1966) 433–441.

    Article  MATH  MathSciNet  Google Scholar 

  28. M. Gromov, ‘Hyperbolic groups’, in Essays in group theory, Math. Sci. Res. Inst. Publ. 8, eds. S.M. Gersten, Springer (1987) 75–263.

    Google Scholar 

  29. S. Hersonsky, F. Paulin, ‘Hausdorff dimension of Diophantine geodesics in negatively curved manifolds’, J. Reine Angew. Math. 539 (2001) 29–43.

    MathSciNet  MATH  Google Scholar 

  30. R. Hill, S.L. Velani, ‘The Jarník-Besicovitch theorem for geometrically finite Kleinian groups’, Proc. London Math. Soc. (3) 77 (1998) 524–550.

    Article  MathSciNet  MATH  Google Scholar 

  31. V. Jarník, ‘Zur metrischen Theorie der Diophantischen Approximationen’, Prace Math.-fiz 36, 2. Heft (1928).

    Google Scholar 

  32. T. Jørgensen, ‘Compact 3-manifolds of constant negative curvature fibering over the circle’, Ann. of Maths. 106 (1977) 61–72.

    Article  MATH  Google Scholar 

  33. V. Kaimanovich, ‘Invariant measures and measures at infinity’, Amm. Inst. H. Poincaré Phys. Théor. 53 (1990) 361–393.

    MATH  MathSciNet  Google Scholar 

  34. M. Kapovich, Hyperbolic manifolds and discrete group: lectures on Thurstons hyperbolization, University of Utah Lecture Notes, 1999.

    Google Scholar 

  35. M. Kesseböhmer, B. O. Stratmann, ‘A multifractal formalism for growth rates and applications to geometrically finite Kleinian groups’, Math. Gottingensis 07 (2001) 1–29 (preprint); Ergod. Th. & Dynam. Sys. 24 (2004) 141–170 (2003).

    Google Scholar 

  36. A. Y. Khintchine, Continued fractions, Univ. of Chicago Press, Chicago and London, 1964.

    Google Scholar 

  37. G. Knieper, ‘Closed geodesics and the uniqueness of maximal measure for rank 1 geodesic flows’, Proc. Sympos. Pure Math, vol. 69, Amer. Math. Soc., Providence, RI, (2001) 573–590.

    Google Scholar 

  38. S.L. Krushkal, B.N. Apanasov, N. A. Gusevskii, Kleinian groups and uniformization in examples and problems, Transl. Math. Monographs 62 AMS, 1986.

    Google Scholar 

  39. N.G. Makarov, ‘Probability methods in the theory of conformal mappings’, Leningrad Math. Jour. 1 (1990) 1–56.

    Google Scholar 

  40. B. Maskit,’ Kleinian groups, Grundlehren d. Math. Wiss. 287, Springer-Verlag, Berlin, 1988.

    Google Scholar 

  41. K. Matsuzaki, ‘Convergence of the Hausdorff dimension of the limit sets of Kleinian groups’, Contemp. Math. 256 (1998) 243–254

    MathSciNet  Google Scholar 

  42. K. Matsuzaki, ‘Hausdorff dimension of limit sets of infinitely generated Kleinian groups’, Math. Proc. Camb. Phil. Soc 128 (2000) 123–139.

    Article  MATH  MathSciNet  Google Scholar 

  43. K. Matsuzaki & M. Taniguchi, Hyperbolic manifolds and Kleinian groups, Oxford Math. Monographs, 1998.

    Google Scholar 

  44. P. Mattila, Geometry of sets and measures in Euclidean spaces. Fractals and rectifiability, Cambridge University Press, 1995.

    Google Scholar 

  45. D. Mumford, C. Series, D. Wright, Indra’s pearls. The vision of Felix Klein, Cambridge University Press, New York, 2002.

    MATH  Google Scholar 

  46. H. Nakada, ‘On metrical theory of diophantine approximation over imaginary quadratic fields’, Acta Arith. 51 (1988) 131–154.

    MathSciNet  Google Scholar 

  47. F. Newberger, ‘On the Patterson-Sullivan measure for geometrically finite groups acting on complex hyperbolic space or quaternionic hyperbolic space’, preprint (2003).

    Google Scholar 

  48. P.J. Nicholls, The ergodic theory of discrete groups, Cambridge University Press, 1989.

    Google Scholar 

  49. J.R. Parker, B.O. Stratmann, ‘Kleinian groups with singly cusped parabolic fixed points’, Kodai J. Math. 24 (2001) 169–206.

    MathSciNet  MATH  Google Scholar 

  50. S.J. Patterson, ‘The limit set of a Fuchsian group’, Acta Math. 136 (1976) 241–273.

    Article  MATH  MathSciNet  Google Scholar 

  51. S.J. Patterson, ‘The exponent of convergence of Poincaré series’, Monatsh. f. Math. 82 (1976) 297–315.

    Article  MATH  MathSciNet  Google Scholar 

  52. S.J. Patterson, ‘Diophantine approximation in Fuchsian groups’, Phil. Trans. Roy. Soc. Lond. 282 (1976) page 527–563.

    MATH  MathSciNet  Google Scholar 

  53. S.J. Patterson, ‘Some examples of Fuchsian groups’, Proc. London Math. Soc. (3) 39 (1979) 276–298.

    MATH  MathSciNet  Google Scholar 

  54. S.J. Patterson, ‘Further remarks on the exponent of convergence of Poincaré series’, Tôhoku Math. Journ. 35 (1983) 357–373.

    MATH  MathSciNet  Google Scholar 

  55. S.J. Patterson, ‘Lectures on measures on limit sets of Kleinian groups’ in Analytical and geometric aspects of hyperbolic space, editor D.B.A. Epstein, Cambridge University Press, 1987.

    Google Scholar 

  56. Y.B. Pesin, Dimension theory in dynamical systems. Contemporary views and applications, Chicago Lect. in Math., Univ. of Chic. Press, Chicago, 1997.

    Google Scholar 

  57. C. Pommerenke, ‘On the Green’s function of Fuchsian groups’, Ann. Acad. Sci. Fenn. A1 Math. 2 (1976) 409–427.

    MATH  MathSciNet  Google Scholar 

  58. M. Rees, ‘Checking ergodicity of some geodesic flows with infinite Gibbs measure’, Ergod. Th. & Dynam. Syst. 1 (1981) 107–133.

    MATH  MathSciNet  Google Scholar 

  59. M. Rees, ‘Divergence type of some subgroups of finitely generated Fuchsian groups’, Ergod. Th. & Dynam. Syst. 1 (1981) 209–221.

    MATH  MathSciNet  Google Scholar 

  60. B. Schapira, ‘Lemme de l’ombre et non divergence des horospéres d’une variété géométriquement finie’, Ann. Inst. Fourier 54 (2004) 939–989.

    MATH  MathSciNet  Google Scholar 

  61. W.M. Schmidt, ‘On badly approximable numbers and certain games”, Transactions of the AMS 123 (1966) 178–199.

    Article  MATH  Google Scholar 

  62. B.O. Stratmann, ‘Ergodentheoretische Untersuchungen Kleinscher Gruppen’, Master thesis, Univ. Göttingen (1987) 1–150.

    Google Scholar 

  63. B.O. Stratmann, ‘Diophantine approximation in Kleinian groups’, Math. Proc. Camb. Phil. Soc. 116 (1994) 57–78.

    Article  MATH  MathSciNet  Google Scholar 

  64. B.O. Stratmann, ‘A note on counting cuspidal excursions’, Annal. Acad. Sci. Fenn. 20 (1995) 359–372.

    MATH  MathSciNet  Google Scholar 

  65. B.O. Stratmann, ‘Fractal dimensions for Jarník limit sets; the semi-classical approach’, Ark. för Mat. 33 (1995) 385–403.

    MATH  MathSciNet  Google Scholar 

  66. B.O. Stratmann, ‘The Hausdorff dimension of bounded geodesics on geometrically finite manifolds’, Ergod. Th. & Dynam. Sys. 17 (1997) 227–246.

    Article  MATH  MathSciNet  Google Scholar 

  67. B.O. Stratmann, ‘A remark on Myrberg initial data for Kleinian groups’, Geometriae Dedicata 65 (1997) 257–0266.

    Article  MATH  MathSciNet  Google Scholar 

  68. B.O. Stratmann, ‘Multiple fractal aspects of conformal measures; a survey’, in Workshop on Fractals and Dynamics’, eds. M. Denker, S.-M. Heinemann, B.O. Stratmann, Math. Gottingensis 05 (1997) 65–71.

    Google Scholar 

  69. B.O. Stratmann, ‘Weak singularity spectra of the Patterson measure for geometrically finite Kleinian groups with parabolic elements’, Michigan Math. Jour. 46 (1999) 573–587.

    Article  MATH  MathSciNet  Google Scholar 

  70. B.O. Stratmann, ‘The exponent of convergence of Kleinian groups; on a theorem of Bishop and Jones’, Math. Gottingensis 01 (2001) 1–16 (preprint); Fractal geometry and stochastics III. Proceedings of the 3rd conference, Friedrichroda, Germany, March 17–22, 2003. Basel: Birkhuser. Progress in Probability 57, 93–107 (2004)

    Google Scholar 

  71. B.O. Stratmann, M. Urbański, ‘The box-counting dimension for geometrically finite Kleinian groups’, Fund. Matem. 149 (1996) 83–93.

    MATH  Google Scholar 

  72. B.O. Stratmann, S. Velani, ‘The Patterson measure for geometrically finite groups with parabolic elements, new and old’, Proc. Lond. Math. Soc. (3) 71 (1995) 197–220.

    MathSciNet  MATH  Google Scholar 

  73. D. Sullivan, ‘The density at infinity of a discrete group of hyperbolic motions’, IHES Publ. Math. 50 (1979) 171–202.

    MATH  MathSciNet  Google Scholar 

  74. D. Sullivan, ‘Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure’, in Geometry Symposium (Utrecht 1980), Lecture Notes in Math., Vol. 894, Springer, Berlin (1981) 127–144.

    Google Scholar 

  75. D. Sullivan, ‘Entropy, Hausdorff measures old and new, and limit sets of geometrically finite Kleinian groups’, Acta Math. 153 (1984) 259–277.

    Article  MATH  MathSciNet  Google Scholar 

  76. D. Sullivan, ‘On the ergodic theory at infinity of an arbitrary discrete group of hyperbolic motions’, Riemann surfaces and related topics, Ann. Math. Studies 97 (1981) 465–496.

    MATH  MathSciNet  Google Scholar 

  77. W.P. Thurston, The geometry and topology of 3-manzfolds, lecture notes, Princeton, 1979.

    Google Scholar 

  78. P. Tukia, ‘The Hausdorff dimension of the limit set of a geometrically finite Kleinian group’, Acta Math. 152 (1984) 127–140.

    Article  MATH  MathSciNet  Google Scholar 

  79. P. Tukia, ‘The Poincaré series and the conformal measure of conical and Myrberg limit points’, J. Anal. Math. 62 (1994) 241–259.

    Article  MATH  MathSciNet  Google Scholar 

  80. N.T. Varopoulos, ‘Finitely generated Fuchsian groups’, J. Reine Angew. Math. 375/376 (1987) 394–405.

    MathSciNet  Google Scholar 

  81. S. Wagon, The Banach-Tarski paradox, Cambridge University Press, 1986.

    Google Scholar 

  82. C. Yue, ‘Mostow rigidity for rank 1 discrete subgroups with ergodic Bowen-Margulis measure’, Invent. Math. 125 (1996) 75–102.

    Article  MATH  MathSciNet  Google Scholar 

  83. R.J. Zimmer, ‘Ergodic theory and semisimple groups, Monographs in Math. 81, Birkhäuser Verlag, Basel, 1984.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Stratmann, B.O. (2006). Fractal Geometry on Hyperbolic Manifolds. In: Prékopa, A., Molnár, E. (eds) Non-Euclidean Geometries. Mathematics and Its Applications, vol 581. Springer, Boston, MA. https://doi.org/10.1007/0-387-29555-0_12

Download citation

Publish with us

Policies and ethics