Skip to main content

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 258))

  • 1016 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Yusuf S, Dagenais G, Pogue J, Bosch J, Sleight P. Vitamin E supplementation and cardiovascular events in high-risk patients. The Heart Outcomes Prevention Evaluation Study Investigators. N Engl J Med 2000;342:154–60.

    Article  PubMed  CAS  Google Scholar 

  2. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. Circ Res 1994;74:1141–8.

    PubMed  CAS  Google Scholar 

  3. Cardillo C, Kilcoyne CM, Cannon RO, III, Quyyumi AA, Panza JA. Xanthine oxidase inhibition with oxypurinol improves endothelial vasodilator function in hypercholesterolemic but not in hypertensive patients. Hypertension 1997;30:57–63.

    PubMed  CAS  Google Scholar 

  4. Heinzel B, John M, Klatt P, Bohme E, Mayer B. Ca2+/calmodulin-dependent formation of hydrogen peroxide by brain nitric oxide synthase. Biochem J 1992;281:627–30.

    PubMed  CAS  Google Scholar 

  5. Pou S, Pou WS, Bredt DS, Snyder SH, Rosen GM. Generation of superoxide by purified brain nitric oxide synthase. J Biol Chem 1992;267:24173–6.

    PubMed  CAS  Google Scholar 

  6. Vasquez-Vivar J, Kalyanaraman B, Martasek P, et al. Superoxide generation by endothelial nitric oxide synthase: the influence of cofactors. Proc Natl Acad Sci U S A 1998;95:9220–5.

    Article  PubMed  CAS  Google Scholar 

  7. Haber F, Weiss J. The catalytic decomposition of hydrogen peroxide by iron salts. Proc R Soc Lond 1934;147:332–52.

    Article  CAS  Google Scholar 

  8. Fenton J. Oxidation of tartaric acid in the presence of iron. J Chem Soc Trans 1894;65:899–910.

    Article  CAS  Google Scholar 

  9. Wentworth P, Jr., McDunn JE, Wentworth AD, et al. Evidence for antibody-catalyzed ozone formation in bacterial killing and inflammation. Science 2002;298:2195–9.

    Article  PubMed  CAS  Google Scholar 

  10. Babior BM, Takeuchi C, Ruedi J, Gutierrez A, Wentworth P, Jr. Investigating antibody-catalyzed ozone generation by human neutrophils. Proc Natl Acad Sci U S A 2003; 100:3031–4.

    Article  PubMed  CAS  Google Scholar 

  11. Wentworth P, Jr., Nieva J, Takeuchi C, et al. Evidence for ozone formation in human atherosclerotic arteries. Science 2003;302:1053–6.

    Article  PubMed  CAS  Google Scholar 

  12. Loscalzo J. Ozone-from environmental pollutant to atherogenic determinant. N Engl J Med 2004;350:834–5.

    Article  PubMed  CAS  Google Scholar 

  13. Patrono C, FitzGerald G. Isoprostanes: potential markers of oxidant stress in atherothrombotic disease. Atheroscler Thromb Vasc Biol 1997;17:2309–15.

    CAS  Google Scholar 

  14. Esterbauer H, Jurgens G, Quehenberger O, Roller E. Autoxidation of human low density lipoprotein: loss of polyunsaturated fatty acids and vitamin E and generation of aldehydes. J Lipid Res 1987;28:495–509.

    PubMed  CAS  Google Scholar 

  15. Frei B. Natural Antioxidants in Human Health and Disease. Academic Press, 1994.

    Google Scholar 

  16. Hazell LJ, Stocker R. Oxidation of low-density lipoprotein with hypochlorite causes transformation of the lipoprotein into a high-uptake form for macrophages. Biochem J 1993;290:165–72.

    PubMed  CAS  Google Scholar 

  17. Parthasarathy S, Auge N, Santanam N. Implications of lag time concept in the oxidation of LDL. Free Radic Res 1998;28:583–91.

    PubMed  CAS  Google Scholar 

  18. Steinberg D. Low density lipoprotein oxidation and its pathobiological significance. J Biol Chem 1997;272:20963–6.

    Article  PubMed  CAS  Google Scholar 

  19. Steinbrecher UP. Oxidation of human low density lipoprotein results in derivatization of lysine residues of apolipoprotein B by lipid peroxide decomposition products. J Biol Chem 1987;262:3603–8.

    PubMed  CAS  Google Scholar 

  20. Haberland ME, Fong D, Cheng L. Malondialdehyde-altered protein occurs in atheroma ofWatanabe heritable hyperlipidemic rabbits. Science 1988;241:215–8.

    PubMed  CAS  Google Scholar 

  21. Beppu M, Fukata Y, Kikugawa K. Interaction of malondialdehyde-modified bovine serum albumin and mouse peritoneal macrophages. Chem Pharm Bull (Tokyo) 1988;36:4519–26.

    CAS  Google Scholar 

  22. Napoli C, D’Armiento F, Mancini F, et al. Removal of mild oxidized lipoprotein(a) by rat hepatic Kupffer cells. Circulation 1996;94(suppl II): 104.

    Google Scholar 

  23. Henriksen T, Mahoney EM, Steinberg D. Interactions of plasma lipoproteins with endothelial cells. AnnN Y Acad Sci 1982;401:102–16.

    CAS  Google Scholar 

  24. Quinn MT, Parthasarathy S, Fong LG, Steinberg D. Oxidatively modified low density lipoproteins: a potential role in recruitment and retention of monocyte/macrophages during atherogenesis. Proc Natl Acad Sci U S A 1987;84:2995–8.

    Article  PubMed  CAS  Google Scholar 

  25. Thomas CE, Jackson RL, Ohlweiler DF, Ku G. Multiple lipid oxidation products in low density lipoproteins induce interleukin-1 beta release from human blood mononuclear cells. J Lipid Res 1994;35:417–27.

    PubMed  CAS  Google Scholar 

  26. Faruqi R, de la Motte C, DiCorleto PE. Alpha-tocopherol inhibits agonist-induced monocytic cell adhesion to cultured human endothelial cells. J Clin Invest 1994;94:592–600.

    PubMed  CAS  Google Scholar 

  27. Devaraj S, Li D, Jialal I. The effects of alpha tocopherol supplementation on monocyte function. Decreased lipid oxidation, interleukin 1 beta secretion, and monocyte adhesion to endothelium. J Clin Invest 1996;98:756–63.

    PubMed  CAS  Google Scholar 

  28. Vink H, Constantinescu AA, Spaan JAE. Oxidized lipoproteins degrade the endothelial surface layer: implications for platelet-endothelial cell adhesion. Circulation 2000;101:1500–2.

    PubMed  CAS  Google Scholar 

  29. Napoli C, Quehenberger O, De Nigris F, Abete P, Glass CK, Palinski W. Mildly oxidized low density lipoprotein activates multiple apoptotic signaling pathways in human coronary cells. FASEB J. 2000; 14:1996–2007.

    Article  PubMed  CAS  Google Scholar 

  30. Sata M, Walsh K. Oxidized LDL activates Fas-mediated endothelial cell apoptosis. J Clin Invest 1998;102:1682–9.

    PubMed  CAS  Google Scholar 

  31. Resink TJ, Bochkov VN, Hahn AW, Philippova MP, Buhler FR, Tkachuk VA. Low-and high-density lipoproteins as mitogenic factors for vascular smooth muscle cells: individual, additive and synergistic effects. J Vasc Res 1995;32:328–38.

    PubMed  CAS  Google Scholar 

  32. Kusuhara M, Chait A, Cader A, Berk BC. Oxidized LDL stimulates mitogen-activated protein kinases in smooth muscle cells and macrophages. Arterioscler Thromb Vasc Biol 1997;17:141–8.

    PubMed  CAS  Google Scholar 

  33. Auge N, Garcia V, Maupas-Schwalm F, Levade T, Salvayre R, Negre-Salvayre A. Oxidized LDL-induced smooth muscle cell proliferation involves the EGF receptor/PI-3 kinase/Akt and the sphingolipid signaling pathways. Arterioscler Thromb Vasc Biol 2002;22:1990–5.

    Article  PubMed  CAS  Google Scholar 

  34. Auge N, Nikolova-Karakashian M, Carpentier S, et al. Role of sphingosine 1-phosphate in the mitogenesis induced by oxidized low density lipoprotein in smooth muscle cells via activation of sphingomyelinase, ceramidase, and sphingosine kinase. J. Biol. Chem. 1999;274:21533–8.

    Article  PubMed  CAS  Google Scholar 

  35. Santanam N, Auge N, Zhou M, Keshava C, Parthasarathy S. Overexpression of human catalase gene decreases oxidized lipid-induced cytotoxicity in vascular smooth muscle cells. Arterioscler Thromb Vasc Biol 1999;19:1912–7.

    PubMed  CAS  Google Scholar 

  36. Meilhac O, Zhou M, Santanam N, Parthasarathy S. Lipid peroxides induce expression of catalase in cultured vascular cells. J Lipid Res 2000;41:1205–13.

    PubMed  CAS  Google Scholar 

  37. Kobayashi S, Inoue N, Azumi H, et al. Expressional changes of the vascular antioxidant system in atherosclerotic coronary arteries. J Atheroscler Thromb 2002;9:184–90.

    PubMed  CAS  Google Scholar 

  38. Fukai T, Folz RJ, Landmesser U, Harrison DG. Extracellular superoxide dismutase and cardiovascular disease. Cardiovasc Res 2002;55:239–49.

    Article  PubMed  CAS  Google Scholar 

  39. Stralin P, Karlsson K, Johansson BO, Marklund SL. The interstitium of the human arterial wall contains very large amounts of extracellular superoxide dismutase. Arterioscler Thromb Vasc Biol 1995;15:2032–6.

    PubMed  CAS  Google Scholar 

  40. Oury TD, Day BJ, Crapo JD. Extracellular superoxide dismutase: a regulator of nitric oxide bioavailability. Lab Invest 1996;75:617–36.

    PubMed  CAS  Google Scholar 

  41. Fukai T, Siegfried MR, Ushio-Fukai M, Cheng Y, Kojda G, Harrison DG. Regulation of the vascular extracellular superoxide dismutase by nitric oxide and exercise training. J Clin Invest 2000; 105:1631–9.

    PubMed  CAS  Google Scholar 

  42. Luoma JS, Stralin P, Marklund SL, Hiltunen TP, Sarkioja T, Yla-Herttuala S. Expression of extracellular SOD and iNOS in macrophages and smooth muscle cells in human and rabbit atherosclerotic lesions: colocalization with epitopes characteristic of oxidized LDL and peroxynitrite-modified proteins. Arterioscler Thromb Vasc Biol 1998;18:157–67.

    PubMed  CAS  Google Scholar 

  43. Fukai T, Siegfried MR, Ushio-Fukai M, Griendling KK, Harrison DG. Modulation of extracellular superoxide dismutase expression by angiotensin II and hypertension. Circ Res 1999;85:23–8.

    PubMed  CAS  Google Scholar 

  44. Loscalzo J. Nitric oxide insufficiency, platelet activation, and arterial thrombosis. Circ Res 2001;88:756–62.

    PubMed  CAS  Google Scholar 

  45. Nappi AJ, Vass E. Hydroxyl radical formation resulting from the interaction of nitric oxide and hydrogen peroxide. Biochim Biophys Acta 1998;1380:55–63.

    PubMed  CAS  Google Scholar 

  46. Loscalzo J. Nitric oxide and the cardiovascular system. In: Loscalzo J, Vita J, eds. Contemporary Cardiology. Volume 4. Totowa NJ: Humana Press Inc, 2000.

    Google Scholar 

  47. Eiserich JP, Baldus S, Brennan ML, et al. Myeloperoxidase, a leukocyte-derived vascular NO oxidase. Science 2002;296:2391–4.

    Article  PubMed  CAS  Google Scholar 

  48. Litov RE, Combs GF, Jr. Selenium in pediatric nutrition. Pediatrics 1991;87:339–51.

    PubMed  CAS  Google Scholar 

  49. Xia YM, Hill KE, Burk RF. Biochemical studies of a selenium-deficient population in China: measurement of selenium, glutathione peroxidase and other oxidant defense indices in blood. J Nutr 1989;119:1318–26.

    PubMed  CAS  Google Scholar 

  50. Virtamo J, Valkeila E, Alfthan G, Punsar S, Huttunen JK, Karvonen MJ. Serum selenium and the risk of coronary heart disease and stroke. Am J Epidemiol 1985;122:276–82.

    PubMed  CAS  Google Scholar 

  51. Chang CY, Lai YC, Cheng TJ, Lau MT, Hu ML. Plasma levels of antioxidant vitamins, selenium, total sulfhydryl groups and oxidative products in ischemic-stroke patients as compared to matched controls in Taiwan. Free Radic Res 1998;28:15–24.

    Article  PubMed  CAS  Google Scholar 

  52. Blankenberg S, Rupprecht HJ, Bickel C, et al. Glutathione peroxidase 1 activity and cardiovascular events in patients with coronary artery disease. N Engl J Med 2003;349:1605–13.

    Article  PubMed  CAS  Google Scholar 

  53. Yamamoto Y, Takahashi K. Glutathione peroxidase isolated from plasma reduces phospholipid hydroperoxides. Arch Biochem Biophys 1993;305:541–5.

    Article  PubMed  CAS  Google Scholar 

  54. Pushpa-Rekha TR, Burdsall AL, Oleksa LM, Chisolm GM, Driscoll DM. Rat phospholipid-hydroperoxide glutathione peroxidase. cDNA cloning and identification of multiple transcription and translation start sites. J Biol Chem 1995;270:26993–9.

    Article  PubMed  CAS  Google Scholar 

  55. Brigelius-Flohe R, Maurer S, Lotzer K, et al. Overexpression of PHGPx inhibits hydroperoxide-induced oxidation, NFkappaB activation and apoptosis and affects oxLDL-mediated proliferation of rabbit aortic smooth muscle cells. Atherosclerosis 2000;152:307–16.

    Article  PubMed  CAS  Google Scholar 

  56. Freedman JE, Loscalzo J, Benoit SE, Valeri CR, Barnard MR, Michelson AD. Decreased platelet inhibition by nitric oxide in two brothers with a history of arterial thrombosis. J Clin Invest 1996;97:979–87.

    Article  PubMed  CAS  Google Scholar 

  57. Bierl C, Voetsch B, Jin RC, Handy DE, Loscalzo J. Determinants of human plasma glutathione peroxidase (GPx-3) expression. J Biol Chem 2004;279:26839–45.

    Article  PubMed  CAS  Google Scholar 

  58. Voetsch B, Bierl C, Handy D, Loscalzo J. Adverse functional consequences of promoter polymorphisms in the plasma glutathione peroxidase gene. American Heart Association, Scientific Sessions 2003, manuscript in preparation.

    Google Scholar 

  59. Stampfer MJ, Malinow MR, Willett WC, et al. A prospective study of plasma homocyst(e)ine and risk of myocardial infarction in US physicians. JAMA 1992;268:877–81.

    Article  PubMed  CAS  Google Scholar 

  60. Selhub J, Jacques PF, Bostom AG, et al. Association between plasma homocysteine concentrations and extracranial carotid-artery stenosis. N Engl J Med 1995;332:286–91.

    Article  PubMed  CAS  Google Scholar 

  61. Welch GN, Upchurch GR, Jr., Loscalzo J. Homocysteine, oxidative stress, and vascular disease. Hosp Pract (Off Ed) 1997;32:81–2, 85, 88–92.

    CAS  Google Scholar 

  62. Upchurch GR, Jr., Welch GN, Fabian AJ, et al. Homocyst(e)ine decreases bioavailable nitric oxide by a mechanism involving glutathione peroxidase. J Biol Chem 1997;272:17012–7.

    Article  PubMed  CAS  Google Scholar 

  63. Weiss N, Zhang YY, Heydrick S, Bierl C, Loscalzo J. Overexpression of cellular glutathione peroxidase rescues homocyst(e)ine-induced endothelial dysfunction. Proc Natl Acad Sci U S A 2001;98:12503–8.

    Article  PubMed  CAS  Google Scholar 

  64. Winterbourn CC, Vissers MC, Kettle AJ. Myeloperoxidase. Curr Opin Hematol 2000;7:53–8.

    Article  PubMed  CAS  Google Scholar 

  65. Carr AC, McCall MR, Frei B. Oxidation of LDL by myeloperoxidase and reactive nitrogen species: reaction pathways and antioxidant protection. Arterioscler Thromb Vasc Biol 2000;20:1716–23.

    PubMed  CAS  Google Scholar 

  66. Daugherty A, Dunn JL, Rateri DL, Heinecke JW. Myeloperoxidase, a catalyst for lipoprotein oxidation, is expressed in human atherosclerotic lesions. J Clin Invest 1994;94:437–44.

    PubMed  CAS  Google Scholar 

  67. Brennan ML, Penn MS, Van Lente F, et al. Prognostic value of myeloperoxidase in patients with chest pain. N Engl J Med 2003;349:1595–604.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Bierl, C., Forgione, M., Loscalzo, J. (2006). The Antioxidant Hypothesis. In: Bourassa, M.G., Tardif, JC. (eds) Antioxidants and Cardiovascular Disease. Developments in Cardiovascular Medicine, vol 258. Springer, Boston, MA. https://doi.org/10.1007/0-387-29553-4_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-29553-4_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-29552-7

  • Online ISBN: 978-0-387-29553-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics