Skip to main content

Preliminary Results of Oxygen Saturation with a Prototype of Continuous Wave Laser Oximeter

  • Conference paper

Part of the book series: Advances in Experimental Medicine and Biology ((volume 578))

5. Conclusions

Near-infrared tissue spectroscopy is a non invasive, innocuous technique to measure oxygen saturation in tissues. NIR oximetry can be used in almost any area of the body, according to the type of analysis to be done.

The development of a laser oximeter, more selective and closer to the requirements of the diffusion theoretical model allows to better evaluate the oxygen saturation from the intensity of the backscattered light at two different wavelengths; the use of a fibre optic probe provides a flexible mechanical connection between the spectroscopic device and the patient, cutting any electrical contact.

From the safety point of view, the system has been calibrated following the CEI EN 60825-1 standard and classified as a Class 1 system.

Preliminary tests performed on volunteers have shown that CW laser oximeter can easily real time follow variations of the biological tissue oxygenation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  1. C. Casavola, L. A. Paunescu, S. Fantini, M. A. Franceschini, P. M. Lugarà, and E. Gratton, Application of near-infrared tissue oxymetry to the diagnosis of peripheral vascular disease, Clinical Hemorheology and Microcirculation 21, 389–393 (1999).

    Google Scholar 

  2. G. Cicco, A non invasive optical oximetry in humans: preliminary data, Clinical Hemorheology and Microcirculation 21, 311–314 (1999).

    ADS  Google Scholar 

  3. P. M. Lugarà, Current approaches to non-invasive optical oxymetry, Clinical Hemorheology and Microcirculation 21, 307–310 (1999).

    Google Scholar 

  4. B. C. Wilson and S. Jacques, Optical Reflectance and Transmittance of Tissue: Principles and Applications, IEEE Journal of Quantum Electronics 26(12), 2186–2199 (1990).

    Article  ADS  Google Scholar 

  5. E. M. Sevick, B. Chance, J. Leigh, S. Nioka, and M. Maris, Quantitation of Time-and Frequency-Resolved Optical Spectra for the Determination of Tissue Oxygenation, Analytical Biochemistry 195, 330–351 (1991).

    Article  Google Scholar 

  6. M. A. Franceschini, E. Gratton and S. Fantini, Noninvasive optical method of measuring tissue and arterial saturation: an application to absolute pulse oximetry of the brain, Optics Letters 24(12), 829–831 (1999).

    Article  ADS  Google Scholar 

  7. J. R. Mourant, J. P. Freyer, A. H. Hielscher, A. A. Eick, D. Shen, and T. M. Johnson, Mechanisms of light scattering from biological cells relevant to noninvasive optical-tissue diagnostics, Applied Optics 37(16),3586–3593 (1998).

    Article  ADS  Google Scholar 

  8. S. Fantini, M. A. Franceschini-Fantini, J. S. Maier, S. A. Walker, B. Barbieri, and E. Gratton, Frequencydomain multichannel optical detector for noninvasive tissue spectroscopy and oximetry, Optical Engineering 34(1), 32–42 (1995).

    Article  ADS  Google Scholar 

  9. S. Wray, M. Cope, D. T. Delpy, J. S. Wyatt, and Reynolds, Characterization of the Near Infrared Absorption Spectra of Cytochrome aa3 and haemoglobin for the non-invasive Monitoring of Cerebral Oxygenation, Biochimica and Biophysica Acta 933, 184–192, 1988.

    Article  Google Scholar 

  10. D._T. Delpy, M. Cope, P. van der Zee, S. Arridge, S. Wray, and J. Wyatt, Estimation of optical pathlength through tissue from direct time of flight measurement, Phys. Med. Biol. 33(12), 1433–1442 (1988).

    Article  Google Scholar 

  11. C. Casavola, G. Cicco, A. Pirelli, and P. M. Lugarà, Preliminary tests on a new, near infra-red, continuous-wave tissue oximeter, Proc. SPIE 4160, 170–176 (2000).

    Article  ADS  Google Scholar 

  12. Norma CEI EN 60825-1 Class. CEI 76-2: Sicurezza degli apparecchi laser. Parte 1: Classificazione delle apparecchiature, prescrizioni e guida per l’utilizzatore. Milano: Ed. CEI, 1998.

    Google Scholar 

  13. J. S. Maier, B. Barbieri, A. Chervu, I. Chervu, S. Fantini, M. A. Franceschini, M. Levi, W. E. Mantulin, A. Rosenberg, S. A Walker, and E. Gratton, In vivo study of human tissues with a portable near-infrared tissue spectrometer, Proc. SPIE 2387, 240–248 (1995).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Tommasi, R., Leo, M.G., Cicco, G., Cassano, T., Nitti, L., Lugarà, P.M. (2006). Preliminary Results of Oxygen Saturation with a Prototype of Continuous Wave Laser Oximeter. In: Cicco, G., Bruley, D.F., Ferrari, M., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVII. Advances in Experimental Medicine and Biology, vol 578. Springer, Boston, MA . https://doi.org/10.1007/0-387-29540-2_9

Download citation

Publish with us

Policies and ethics