Skip to main content

Mass Law Predicts Hyperbolic Hypoxic Ventilatory Response

  • Conference paper
  • 835 Accesses

Part of the book series: Advances in Experimental Medicine and Biology ((volume 578))

6. Conclusion

The hyperbolic hypoxic ventilatory response vs PaO2, HVRp, is interpreted as relecting a mass hyperbolic relationship of cytochrome PcO2 to cytochrome potential Ec, offset 32 torr by the constant diffusion gradient between arterial blood and cytochrome in CB at its constant metabolic rate \( \dot VO_2 \). Ec is taken to be a linear function of redox reduction and CB ventilatory drive. As Ec rises in hypoxia, the absolute potentials of each step in the citric acid cycle rises equally while the potential drop across each step remains constant because flux rate remains constant. A hypothetic HVRs (\( \dot VE \) vs SaO2) response curve computed from these assumptions is strikingly non linear. A hypothetic HVRp calculated from an assumed linear HVRs cannot be fit to the observed hyperbolic increase of ventilation in response to isocapnic hypoxia at PO2 less than 40 torr. The incompatibility of these results suggest that in future studies HVRs will not be found to be linear, especially below 80% SaO2 and HVRp will fail to be accurately hyperbolic.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. D. F. Wilson, W. L. Rumsey, T. J. Green, J. M. Vanderkooi. The oxygen dependence of mitochondrial oxidative phosphorylation measured by a new optical method for measuring oxygen concentration. J Biol Chem 263, 2712–2718 (1988).

    Google Scholar 

  2. D. F. Wilson, A. Mokashi, S. Lahiri, S. A. Vinogradov. Tissue PO2 and mitochondrial enzymes. Cytochrome C oxidase as O2 sensor. Adv Exp Med Biol 475, 259–264 (2000).

    Article  Google Scholar 

  3. D. F. Wilson, K. M. Laughlin, C. Rozanov, et al. Tissue oxygen sensing and the carotid body. Adv Exp Med Biol 454, 447–454 (1998).

    Google Scholar 

  4. S. Lahiri, D. F. Wilson, R. Iturriaga, W. L. Rumsey. Microvascular PO2 regulation and chemoreception in the cat carotid body. Adv Exp Med Biol 345, 129–135 (1994).

    Google Scholar 

  5. S. Lahiri, D. K. Chugh, A. Mokashi, S. Vinogradov, S. Osanai, D. F. Wilson. Cytochrome oxidase is the primary oxygen sensor in the cat carotid body. Adv Exp Med Biol 388, 213–217 (1996).

    Google Scholar 

  6. S. Lahiri, C. Rozanov, A. Roy, B. Storey, D. G. Buerk. Regulation of oxygen sensing in peripheral arterial chemoreceptors. Int J Biochem Cell Biol 33, 755–774 (2001).

    Article  Google Scholar 

  7. J. V. Weil. Hypoxic drive: assessment and interpretation. Proc R Soc Med 68, 239 (1975).

    Google Scholar 

  8. S. Lahiri, R. E. n. Forster. CO2/H(+) sensing: peripheral and central chemoreception. Int J Biochem Cell Biol 35, 1413–1435 (2003).

    Article  Google Scholar 

  9. H. Acker. PO2 chemoreception in arterial chemoreceptors. Annu Rev Physiol 51, 835–844 (1989).

    Article  Google Scholar 

  10. W. J. Whalen, J. Savoca, P. Nair. Oxygen tension measurement in the carotid body of the cat. Am J Physiol 225, 986–999 (1973).

    Google Scholar 

  11. D. F. Wilson, C. S. Owen, M. Erecinska. Quantitative dependence of mitochondrial oxidative phosphorylation on oxygen concentration: a mathematical model. Arch Biochem Biophys 195, 494–504 (1979).

    Article  Google Scholar 

  12. M. Erecinska, D. F. Wilson, K. Nishiki. Homeostatic regulation of cellular energy metabolism: experimental characterization in vivo and fit to a model. Am J Physiol 234, C82–89 (1978).

    Google Scholar 

  13. D. F. Wilson, A. Mokashi, D. Chugh, S. Vinogradov, S. Osanai, S. Lahiri. The primary oxygen sensor of the cat carotid body is cytochrome a3 of the mitochondrial respiratory chain. FEBS Lett 351, 370–374 (1994).

    Article  Google Scholar 

  14. S. Lahiri, W. L. Rumsey, D. F. Wilson, R. Iturriaga. Contribution of in vivo microvascular PO2 in the cat carotid body chemotransduction. J Appl Physiol 75, 1035–1043 (1993).

    Google Scholar 

  15. J. W. Severinghaus. Simple, accurate equations for human blood O2 dissociation computations. J Appl Physiol 46, 599–602 (1979).

    Google Scholar 

  16. M. Sato, J. W. Severinghaus, F. L. Powell, F. Xu, M. J. J. Spellman. Augmented hypoxic ventilatory response in man at altitude. J Appl Physiol 73, 101–107 (1992)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Severinghaus, J.W. (2006). Mass Law Predicts Hyperbolic Hypoxic Ventilatory Response. In: Cicco, G., Bruley, D.F., Ferrari, M., Harrison, D.K. (eds) Oxygen Transport to Tissue XXVII. Advances in Experimental Medicine and Biology, vol 578. Springer, Boston, MA . https://doi.org/10.1007/0-387-29540-2_7

Download citation

Publish with us

Policies and ethics