Skip to main content

Partial Differential Equations for Morphological Operators

  • Chapter
Space, Structure and Randomness

Part of the book series: Lecture Notes in Statistics ((LNS,volume 183))

Abstract

Two of G. Matheron’s seminal contributions have been his development of size distributions (else called ‘granulometries’) and his kernel representation theory. The first deals with semigroups of multiscale openings and closings of binary images (shapes) by compact convex sets, a basic ingredient of which are the multiscale Minkowski dilations and erosions. The second deals with representing increasing and translation-invariant set operators as union of erosions by its kernel sets or as an intersection of dilations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Axiomatisation et nouveaux opérateurs de la morphologie mathématique,” C. R. Acad. Sci. Paris, pp. 265–268, t. 315, Série I, 1992.

    MATH  MathSciNet  Google Scholar 

  2. L. Alvarez, F. Guichard, P.L. Lions, and J.M. Morel, “Axioms and Fundamental Equations of Image Processing,” Archiv. Rat. Mech., vol. 123(3), pp. 199–257, 1993.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Alvarez and J.M. Morel, “Formalization and computational aspects of image analysis,” Acta Numerica, pp. 1–59, 1994.

    Google Scholar 

  4. A. Arehart, L. Vincent and B. Kimia, “Mathematical Morphology: The Hamilton-Jacobi Connection,” in Proc. Int’l Conf. Comp. Vision, pp. 215–219, 1993.

    Google Scholar 

  5. G. Barles, “Solutions de viscosité des équations de Hamilton-Jacobi. (Viscosity Solutions of Hamilton-Jacobi Equations)”, Mathématiques & Applications, Springer-Verlag, vol. 194, 1994.

    Google Scholar 

  6. G. Barles and C. Georgelin, “A simple proof of convergence for an approximation scheme for computing motions by mean curvature”, SIAM Journal of numerical analysis, vol. 32, pp. 454–500, 1995.

    Article  MathSciNet  Google Scholar 

  7. H. Blum, “A Transformation for Extracting New Descriptors of Shape,” in Proceedings of the Symposium on Models for the Perception of Speech and Visual Forms, Boston, Nov. 1964, MIT Press, Cambridge, MA, 1967.

    Google Scholar 

  8. R. W. Brockett and P. Maragos, “Evolution Equations for Continuous-Scale Morphology,” Proc. IEEE Int’l Conf. Acoust., Speech, Signal Processing, San Francisco, CA, March 1992.

    Google Scholar 

  9. R. Brockett and P. Maragos, “Evolution Equations for Continuous-Scale Morphological Filtering,” IEEE Trans. Signal Processing, vol. 42, pp. 3377–3386, Dec. 1994.

    Article  Google Scholar 

  10. F. Cao, “Geometric Curve Evolution and Image Processing”, Lecture Notes in Mathematics, vol. 1805, Springer Verlag, February 2003.

    Google Scholar 

  11. F. Catté, F. Dibos and G. Koepfler, “A Morphological Scheme for Mean Curvature Motion and Applications to Anisotropic Diffusion and Motion of Level Sets,” SIAM J. of Num. Analysis, vol. 32–6, pp. 1895–1909, décembre 1995.

    Article  Google Scholar 

  12. Y.-G. Chen, Y. Giga and S. Goto”, “Uniqueness and existence of viscosity solutions of generalized mean curvature flow equations.”, J. Differ Geom. 33, No.3 p 749–786, 1991.

    MATH  MathSciNet  Google Scholar 

  13. M. G. Crandall, “Viscosity Solutions: a primer”, pp. 1–43, in M. Bardi, M.G. Crandall, L.C. Evans, H.M. Soner and P.E. Souganidis, “Viscosity Solutions and Applications”, Montecatini Terme, 1995, edited by I.C. Dolcetta and P.L. Lions, Lecture Notes in Mathematics vol. 1660, Springer.

    Google Scholar 

  14. M. G. Crandall, H. Ishii and P.-L. Lions, “User’s Guide to Viscosity Solutions of Second Order Partial Differential Equations,” Bull. Amer. Math. Soc., vol. 27, pp. 1–66, July 1992.

    MATH  MathSciNet  Google Scholar 

  15. L. Dorst and R. van den Boomgaard, “Morphological Signal Processing and the Slope Transform,” Signal Processing, vol. 38, pp. 79–98, July 1994.

    Article  Google Scholar 

  16. L. C. Evans, “Convergence of an algorithm for mean curvature motion”, Indiana University Mathematics Journal, vol. 42, pp. 553–557, 1993.

    Article  Google Scholar 

  17. L. C. Evans and J. Spruck, “Motion of Level Sets by Mean Curvature. I,” J. Diff. Geom., vol. 33, pp. 635–681, 1991.

    MATH  MathSciNet  Google Scholar 

  18. M. Grayson, “The heat equation shrinks embedded plane curves to round points”, J. Differential Geometry, vol. 26, pp. 285–314, 1987.

    MATH  MathSciNet  Google Scholar 

  19. M. Gage, and R. S. Hamilton, “The heat equation shrinking convex plane curves”, J. Differ. Geom., vol. 23, pp. 69–96, 1986.

    MATH  MathSciNet  Google Scholar 

  20. F. Guichard “Axiomatization of images and movies scale-space”, PhD Thesis, University Paris Dauphine, 1994.

    Google Scholar 

  21. F. Guichard and J.-M. Morel, “Partial differential equations and image iterative filtering”, in The State of the Art in Numerical Analysis, Duff. I.S. (ed.), 1996

    Google Scholar 

  22. F. Guichard and J.-M. Morel, “Geometric Partial Differential Equations and Iterative Filtering,” in Mathematical Morphology and Its Applications to Image and Signal Processing (H. Heijmans and J. Roerdink, Eds.), Kluwer Acad. Publ., 1998, pp. 127–138.

    Google Scholar 

  23. F. Guichard and J.-M. Morel, Image Analysis and P.D.E.s, book to be published.

    Google Scholar 

  24. F. Guichard and J.-M. Morel, “A Note on Two Classical Enhancement Filters and Their Associated PDE’s”, International Journal of Computer Vision, vol. 52(2), pp. 153–160, May 2003.

    Article  Google Scholar 

  25. H.J.A.M. Heijmans and P. Maragos, “Lattice Calculus and the Morphological Slope Transform,” Signal Processing, vol. 59, pp. 17–42, 1997.

    Article  MATH  Google Scholar 

  26. H.J.A.M. Heijmans and R. van den Boomgaard, “Algebraic Framework for Linear and Morphological Scale-Spaces”, J. Vis. Commun. and Image Repres., vol.13, pp.269–301, 2002.

    Article  Google Scholar 

  27. B.K.P. Horn, Robot Vision, MIT Press, Cambridge, MA, 1986.

    Google Scholar 

  28. H. Ishii, “A generalization of the Bence, Merriman and Osher algorithm for motion by mean curvature.”, Proceedings of the international conference on curvature flows and related topics held in Levico, Italy””, GAKUTO Int. Ser., Math. Sci. Appl., vol. 5, pp. 111–127, 1994.

    Google Scholar 

  29. B. Kimia, A. Tannenbaum, and S. Zucker, “Shapes, Shocks and Deformations I: The components of Two-dimensional Shape and the Reaction-Diffusion Space”, Int’l J. Comp. Vision, vol. 15(3), pp. 189–224, 1995.

    Article  Google Scholar 

  30. R. Kimmel, N. Kiryati, and A. M. Bruckstein, “Sub-Pixel Distance Maps and Weighted Distance Transforms,” J. Math. Imaging and Vision, vol. 6, pp. 223–233, 1996.

    Article  MathSciNet  Google Scholar 

  31. J. J. Koenderink, “The Structure of Images,” Biol. Cybern., vol. 50, pp. 363–370, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  32. P. D. Lax, “Hyperbolic Systems of Conservation Laws and the Mathematical Theory of Shock Waves,” SIAM Press, Philadelphia, 1973.

    MATH  Google Scholar 

  33. T. Lindeberg, Scale-Space Theory in Computer Vision, Kluwer Academic Publishers, 1994.

    Google Scholar 

  34. J-L. Lisani, P. Monasse, L. Moisan, and J-M. Morel. “On the theory of planar shape”. SIAM J. on Multiscale Modeling and Simulation, vol. 1(1):1–24, 2003.

    Article  MATH  MathSciNet  Google Scholar 

  35. P. Maragos, A Unified Theory of Translation-Invariant Systems with Applications to Morphological Analysis and Coding of Images, Ph.D. Thesis, Georgia Inst. Technology, Atlanta, June 1985.

    Google Scholar 

  36. P. Maragos, “A Representation Theory for Morphological Image and Signal Processing,” IEEE Trans. Pattern Analysis and Machine Intelligence, vol. 11, pp. 586–599, June 1989.

    Article  MATH  Google Scholar 

  37. P. Maragos, “Morphological Systems: Slope Transforms and Max-Min Difference and Differential Equations,” Signal Processing, vol. 38, pp. 57–77, July 1994.

    Article  MATH  Google Scholar 

  38. P. Maragos, “Differential Morphology and Image Processing”, IEEE Trans. Image Processing, vol.5, pp.922–937, June 1996.

    Article  Google Scholar 

  39. P. Maragos, “Algebraic and PDE Approaches for Lattice Scale-Spaces with Global Constraints”, Int’l J. Comp. Vision, vol.52(2/3), pp.121–137, May 2003.

    Article  Google Scholar 

  40. P. Maragos and M. A. Butt, “Curve Evolution, Differential Morphology and Distance Transforms as Applied to Multiscale and Eikonal Problems”, Fundamentae Informatica, vol.41, pp.91–129, Jan. 2000.

    MATH  MathSciNet  Google Scholar 

  41. P. Maragos and R. W. Schafer, “Morphological Filters-Part II: Their Relations to Median, Order-Statistic, and Stack Filters,” IEEE Trans. Acoust., Speech, and Signal Processing, vol. 35, pp. 1170–1184, Aug. 1987. “Corrections,” IEEE Trans. ASSP, vol. 37, no. 4, p. 597, Apr. 1989.

    Article  MathSciNet  Google Scholar 

  42. D. Marr, Vision, Freeman, San Francisco, 1982.

    Google Scholar 

  43. G. Matheron, Random Sets and Integral Geometry, Wiley, New York, 1975.

    MATH  Google Scholar 

  44. J. Mattioli, “Differential Relations of Morphological Operators,” Proc. Int’l Workshop on Math. Morphology and its Application to Signal Processing, J. Serra and P. Salembier, Eds., Univ. Polit. Catalunya, Barcelona, Spain, May 1993.

    Google Scholar 

  45. B. Merriman, J. Bence, and S. Osher, “Diffusion generated motion by mean curvature”, American Mathematical Society”, Computational Crystal Growers Workshop, pp. 73–83, 1992.

    Google Scholar 

  46. F. Meyer, “Topographic Distance and Watershed Lines,” Signal Processing, vol. 38, pp. 113–125, July 1994.

    Article  MATH  Google Scholar 

  47. F. Meyer and P. Maragos, “Nonlinear Scale-Space Representation with Morphological Levelings”, J. Visual Communic. and Image Representation, vol.11, pp.245–265, 2000.

    Article  Google Scholar 

  48. L. Moisan, “Affine Plane Curve Evolution: a Fully Consistent Scheme”, IEEE Transactions On Image Processing, vol. 7,3, pp. 411–420, March 1998.

    Article  MATH  MathSciNet  Google Scholar 

  49. L. Najman and M. Schmitt, “Watershed of a Continuous Function,” Signal Processing, vol. 38, pp. 99–112, July 1994.

    Article  Google Scholar 

  50. S. Osher and J. Sethian, “Fronts Propagating with Curvature-Dependent Speed: Algorithms Based on Hamilton-Jacobi Formulations,” J. Comput. Physics, vol. 79, pp. 12–49, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  51. P. Perona and J. Malik, “Scale-Space and Edge Detection Using Anisotropic Diffusion,” IEEE Trans. Pattern Anal. Mach. Intellig., vol. 12, pp. 629–639, July 1990.

    Article  Google Scholar 

  52. E. Rouy and A. Tourin, “A Viscosity Solutions Approach to Shape from Shading,” SIAM J. Numer. Anal., vol. 29(3), pp. 867–884, June 1992.

    Article  MATH  MathSciNet  Google Scholar 

  53. P. Salembier and J. Serra, “Flat Zones Filtering, Connected Operators, and Filters by Reconstruction”, IEEE Trans. Image Processing, vol. 4, pp.1153–1160, Aug. 1995.

    Article  Google Scholar 

  54. G. Sapiro, R. Kimmel, D. Shaked, B. Kimia, and A. Bruckstein, “Implementing Continuous-scale Morphology via Curve Evolution,” Pattern Recognition, vol. 26, pp. 1363–1372, 1993.

    Article  Google Scholar 

  55. G. Sapiro and A. Tannenbaum, “Affine Invariant Scale-Space,” Int’l J. Comp. Vision, vol. 11, pp. 25–44, 1993.

    Article  Google Scholar 

  56. J. Serra, Image Analysis and Mathematical Morphology, Acad. Press, NY, 1982.

    MATH  Google Scholar 

  57. J. Serra, editor, Image Analysis and Mathematical Morphology. Vol. 2, Acad. Press, NY, 1988.

    Google Scholar 

  58. J. A. Sethian, Level Set Methods and Fast Marching Methods, Cambridge Univ. Press, 1999.

    Google Scholar 

  59. R. van den Boomgaard, Mathematical Morphology: Extensions towards Computer Vision, Ph.D. Thesis, Univ. of Amsterdam, The Netherlands, 1992.

    Google Scholar 

  60. R. van den Boomgaard and A. Smeulders, “The Morphological Structure of Images: The Differential Equations of Morphological Scale-Space,” IEEE Trans. Pattern Anal. Mach. Intellig., vol.16, pp.1101–1113, Nov. 1994.

    Article  Google Scholar 

  61. P. Verbeek and B. Verwer, “Shading from shape, the eikonal equation solved by grey-weighted distance transform,” Pattern Recogn. Lett., vol.11, pp.618–690, 1990.

    Article  Google Scholar 

  62. M. Wertheimer, “Untersuchungen zur Lehre der Gestalt, II”, Psychologische Forschung, vol4. p 301–350, 1923.

    Article  Google Scholar 

  63. A. P. Witkin, “Scale-Space Filtering,” Proc. Int’l Joint Conf. Artif. Intellig., Karlsruhe, Germany, 1983.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Guichard, F., Maragos, P., Morel, JM. (2005). Partial Differential Equations for Morphological Operators. In: Bilodeau, M., Meyer, F., Schmitt, M. (eds) Space, Structure and Randomness. Lecture Notes in Statistics, vol 183. Springer, New York, NY. https://doi.org/10.1007/0-387-29115-6_15

Download citation

Publish with us

Policies and ethics