Skip to main content

Expression and Function of Pitx2 in Chick Heart Looping

  • Chapter
The Molecular Mechanisms of Axenfeld-Rieger Syndrome

Part of the book series: Medical Intelligence Unit ((MIUN))

  • 375 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Olson EN, Srivastava D. Molecular pathways controlling heart development. Science 1996; 272:671–676.

    Article  PubMed  CAS  Google Scholar 

  2. Garcia-Martinez V, Schoenwolf G. Primitive-streak origin of the cardiovascular system in avian embryos. Dev Biol 1993; 159:706–719.

    Article  PubMed  CAS  Google Scholar 

  3. Hamburger V, Hamilton HL. A series of normal stages in the development of the chick embryo. J Morphol 1951; 88:49–92.

    Article  Google Scholar 

  4. Männer J. Cardiac looping in the chick embryo: A morphological review with special reference to terminological and biomechanical aspects of the looping process. Anat Rec 2000; 259:248–262.

    Article  PubMed  Google Scholar 

  5. Garcia-Peláez I, Arteaga M. Experimental study of the development of the truncus arteriosus of the chick embryo heart I. Time of appearance. Anat Rec 1993; 237:378–384.

    Article  PubMed  Google Scholar 

  6. Stalsberg H. Mechanism of dextral looping of the embryonic heart. Am J Cardiol 1970; 25:265–271.

    Article  PubMed  CAS  Google Scholar 

  7. Manning A, McLachlan JC. Looping of chick embryo hearts in vitro. J Anat 1990; 168:257–263.

    PubMed  CAS  Google Scholar 

  8. Patten BM. The formation of the cardiac loop in the chick. Am J Anat 1922; 30:373–393.

    Article  Google Scholar 

  9. Stalsberg H. Regional mitotic activity in the precardiac mesoderm and differentiating heart tube in the chick embryo. Dev Biol 1969; 20:18–45.

    Article  PubMed  CAS  Google Scholar 

  10. Manasek FJ, Kulikowski RR, Nakamura A et al. Early heart development: A new model of cardiac morphogenesis. In: Zak R, ed. Growth of the heart in health and disease. New York: Raven Press, 1984:105–285.

    Google Scholar 

  11. Taber LA, Lin IE, Clark EB. Mechanics of cardiac looping. Dev Dyn 1995; 302:42–50.

    Google Scholar 

  12. Capdevila J, Vogan K, Tabin CJ et al. Mechanisms of left-right determination in vertebrates. Cell 2000; 101:9–21.

    Article  PubMed  CAS  Google Scholar 

  13. Hoyle C, Brown NA, Wolpert L. Development of left/right handedness in the chick heart. Development 1992; 115:1071–1078.

    PubMed  CAS  Google Scholar 

  14. Levin M, Johnson RL, Stern CD et al. A molecular pathway determining left-right asymmetry in chick embryogenesis. Cell 1995; 82:803–814.

    Article  PubMed  CAS  Google Scholar 

  15. Levin M, Pagan S, Roberts DJ et al. Left/right patterning signals and the independent regulation of different aspects of situs in the chick embryo. Dev Biol 1997; 189:57–67.

    Article  PubMed  CAS  Google Scholar 

  16. Boettger T, Wittier L, Kessel M. FGF8 functions in the specification of the right body side of the chick. Curr Biol 1999; 9:277–280.

    Article  PubMed  CAS  Google Scholar 

  17. Shamim H, Mason I. Expression of Fgf4 during early development of the chick embryo. Mech Dev 1999; 85:189–192.

    Article  PubMed  CAS  Google Scholar 

  18. Monsoro-Burq A, Le Douarin NM. BMP4 plays a key role in left-right patterning in chick embryos by maintaining sonic hedgehog asymmetry. Mol Cell 2001; 7:789–799.

    Article  PubMed  CAS  Google Scholar 

  19. Garcia-Castro MI, Vielmetter E, Bronner-Fraser M. N-cadherin, a cell adhesion molecule involved in establishment of embryonic left-right asymmetry. Science 2000; 288:1047–1051.

    Article  PubMed  CAS  Google Scholar 

  20. Kawakami M, Nakanishi N. The role of an endogenous PKA inhibitor, PKI_, in organizing left-right axis formation. Development 2001; 128:2509–2515.

    PubMed  CAS  Google Scholar 

  21. Rodriguez-Esteban C, Capdevila J, Kawamami Y et al. Wnt signaling and PKA control Nodal expression and left-right determination in the chick embryo. Development 2001; 128:3189–3195.

    PubMed  CAS  Google Scholar 

  22. Pagán-Westphal SM, Tabin CJ. The transfer of left-right positional information during chick embryogenesis. Cell 1998; 93:25–35.

    Article  PubMed  Google Scholar 

  23. Rodriguez-Esteban C, Capdevila J, Economides AN et al. The novel Cer-like protein caronte mediates the establishment of embryonic left-right asymmetry. Nature 1999; 401:243–251.

    Article  PubMed  CAS  Google Scholar 

  24. Yokouchi Y, Vogan KJ, Pearse II RV et al. Antagonistic signaling by caronte, a novel cerberus-related gene, establishes left-right asymmetric gene expression. Cell 1999; 98:573–583.

    Article  PubMed  CAS  Google Scholar 

  25. Zhu L, Marvin MJ, Gardiner A et al. Cerberus regulates left-right asymmetry of the embryonic head and heart. Curr Biol 1999; 9:931–938.

    Article  PubMed  CAS  Google Scholar 

  26. Schlange T, Schnipkoweit I, Andrée B et al. Chick CFC controls Leftyl expression in the embryonic midline and Nodal expression in the lateral plate. Dev Biol 2001; 234:376–389.

    Article  PubMed  CAS  Google Scholar 

  27. Issac A, Sargent MG, Cooke J. Control of vertebrate left-right asymmetry by a Snail-related zinc finger gene. Science 1997; 275:1301–1304.

    Article  Google Scholar 

  28. Logan M, Pagan-Westphal SM, Smith DM et al. The transcription factor Pitx2 mediates situs-specific morphogenesis in response to left-right asymmetric signals. Cell 1998; 94:307–317.

    Article  PubMed  CAS  Google Scholar 

  29. Ryan AK, Blumberg B, Rodriguez-Esteban C et al. Pitx2 determines left-right asymmetry of internal organs in vertebrates. Nature 1998; 394:545–551.

    Article  PubMed  CAS  Google Scholar 

  30. Smith SM, Dickman ED, Thompson RP et al. Retinoic acid directs cardiac laterality and the expression of early markers of precardiac asymmetry. Dev Biol 1997; 182:162–171.

    Article  PubMed  CAS  Google Scholar 

  31. Tsuda T, Majumder K, Linask KK. Differential expression of flectin in the extracellular matrix and left-right asymmetry in mouse embryonic heart during looping stages. Dev Genet 1998; 23:203–214.

    Article  PubMed  CAS  Google Scholar 

  32. Mercola M, Levin M. Left-right asymmetry determination in vertebrates. Annu Rev Cell Dev Biol 2001; 17:779–805.

    Article  PubMed  CAS  Google Scholar 

  33. St Amand TR, Ra J, Zhang Y et al. Cloning and expression pattern of chick Pitx2: A new component in the SHH signaling pathway controlling embryonic heart looping. Biochem Biophys Res Commun 1998; 247:100–105.

    Article  PubMed  CAS  Google Scholar 

  34. Kitamura K, Miura H, Yanazawa M et al. Expression patterns of Brx1 (Rieg gene), Sonic hedge hog, Nkx2.2 and Arx during zona limitans intrathalamica and embryonic ventral lateral geniculate nuclear formation. Mech Dev 1997; 67:83–96.

    Article  PubMed  CAS  Google Scholar 

  35. Yu X, St. Amand TR, Wang S et al. Differential expression and function analysis of Pitx2 isoforms in regulation of heart looping in the chick. Development 2001; 128:1005–1013.

    PubMed  CAS  Google Scholar 

  36. Piedra ME, Icardo JM, Albajar M et al. Pitx2 participates in the late phase of the pathway controlling left-right asymmetry. Cell 1998; 94:319–324.

    Article  PubMed  CAS  Google Scholar 

  37. Schweickert A, Campione M, Steibeisser H et al. Pitx2 isoforms: Involvement of Pitx2c but not Pitx2a or Pitx2b in vertebrate left-right asymmetry. Mech Dev 2000; 90:41–51.

    Article  PubMed  CAS  Google Scholar 

  38. Essner JJ, Branford W, Zhang J et al. Mesendoderm and left-right brain, heart and gut develop ment are differentially regulated by pitx2 isoforms. Development 2000; 127:1081–1093.

    PubMed  CAS  Google Scholar 

  39. Shiratori H, Sakuma R, Watanabe M et al. Two-step regulation of left-right asymmetric expression of Pitx2: Initiation by Nodal signaling and maintenance by Nkx2. Mol Cell 2001; 7:137–149.

    Article  PubMed  CAS  Google Scholar 

  40. Campione M, Steinbeisser H, Schweickert A et al. The homeobox gene Pitx2: Mediator of asymmetric left-right signaling in vertebrate heart and gut looping. Development 1999; 126:1225–1234.

    PubMed  CAS  Google Scholar 

  41. Patel K, Issac A, Cooke J. Nodal signaling and the role of the transcription factors SnR and Pitx2 in vertebrate left-right asymmetry. Curr Biol 1999; 9:609–612.

    Article  PubMed  CAS  Google Scholar 

  42. Chazaud C, Chambon P, Dolle P. Retinoic acid is required in the mouse embryo for left-right asymmetry determination and heart morphogenesis. Development 1999; 126:2589–2596.

    PubMed  CAS  Google Scholar 

  43. Tsukui T, Capdevila J, Tamura K et al. Multiple left-right asymmetry defects in Shh-/-mutant mice enveil a convergence of the Shh and retinoic acid pathways in the control of Lefty-1. Proc Natl Acad Sci USA 1999; 96:11376–11381.

    Article  PubMed  CAS  Google Scholar 

  44. Wasiak S, Lohnes D. Retinoic aicd affects left-right patterning. Dev Biol 1999; 215:332–342.

    Article  PubMed  CAS  Google Scholar 

  45. Zile MH, Kostetskii I, Yuan S et al. Retinoid signaling is required to complete the vertebrate cardiac left/right asymmetry pathway. Dev Biol 2000; 223:323–338.

    Article  PubMed  CAS  Google Scholar 

  46. Amendt BA, Sutherland LB, Seminar EV et al. The molecular basis of rieger syndrome. J Biol Chem 1998; 273:20066–20072.

    Article  PubMed  CAS  Google Scholar 

  47. Amendt BA, Sutherland LB, Russo AF. Multifunctional role of the Pitx2 homeodomain protein C-terminal tail. Mol Cell Biol 1999; 19:7001–7010.

    PubMed  CAS  Google Scholar 

  48. Gage PJ, Suh H, Camper SA. Dosage requirement of Pitx2 for development of multiple organs. Development 1999; 126:4643–4651.

    PubMed  CAS  Google Scholar 

  49. Kitamura K, Miura H, Miyagawa-tomita S et al. Mouse Pitx2 deficiency leads to anomalies of the ventral body wall, heart, extra-and periocular mesoderm and right pulmonary isomerism. Develop ment 1999; 126:5749–5758.

    CAS  Google Scholar 

  50. Lin CR, Kioussi C, O’Connell S et al. Pitx2 regulates lung asymmetry, cardiac positioning and pituitary and tooth morphogenesis. Nature 1999; 401:279–282.

    Article  PubMed  CAS  Google Scholar 

  51. Lu MF, Pressman C, Dyer R et al. Function of rieger syndrome gene in left-right asymmetry and craniofacial development. Nature 1999; 401:276–278.

    Article  PubMed  CAS  Google Scholar 

  52. Liu C, Liu W, Lu MF et al. Regulation of left-right asymmetry by thresholds of Pitx2c activity. Development 2001; 128:2039–2048.

    PubMed  CAS  Google Scholar 

  53. Wright CVE. Mechanisms of left-right asymmetry: What’s right and what’s left? Dev Cell 2001; 1:179–198.

    Article  PubMed  CAS  Google Scholar 

  54. Blum M, Steinbeisser H, Campione M et al. Vertebrate left-right asymmetry: Old studies and new insights. Cell Mol Biol 1999; 45:505–516.

    PubMed  CAS  Google Scholar 

  55. Hjalt TA, Amendt BA, Murray JC. PITX2 regulates procollagen lysyl hydroxylase (PLOD) gene expression: Implications for the pathology of Rieger syndrome. J Cell Biol 2001; 152:545–552.

    Article  PubMed  CAS  Google Scholar 

  56. Linask KK, Yu X, Chen YP et al. Directionality of heart looping: Effect of Pitx2c misexpression on flectin asymmetry and midline structures. Dev Biol 2002; 246:407–417.

    Article  PubMed  CAS  Google Scholar 

  57. Tsuda T, Philp N, Zile MH et al. Left-right asymmetric localization of flectin in the extracellular matrix during heart looping. Dev Biol 1996; 173:39–50.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Springer Science+Business Media

About this chapter

Cite this chapter

Yu, X., Wang, S., Chen, Y. (2005). Expression and Function of Pitx2 in Chick Heart Looping. In: The Molecular Mechanisms of Axenfeld-Rieger Syndrome. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28672-1_6

Download citation

Publish with us

Policies and ethics