Skip to main content

Joint Classification and Compression of Hyperspectral Images

  • Chapter
Hyperspectral Data Compression

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. W. Boardman, F. Kruse, and R. Green, “Mapping target signatures via partial unmixing of AVIRIS data,” in VIJPL airborne Earth Science Workshop, Pasadena, CA, 1995.

    Google Scholar 

  2. M. Winter, “N-FINDR: An algorithm for fast autonomous spectral end-member determination in hyperspectral data,” in Proc. SPIE, vol. 3753, 1999, pp. 266–275.

    Article  Google Scholar 

  3. R. Neville, K. Staenz, T. Szeredi, and P. Hauff, “Automatic endmember extraction from hyperspectral data for mineral exploration,” in 21st Can. Symp. Remote Sensing, Ottawa, ON, Canada, 1999.

    Google Scholar 

  4. A. Plaza, P. Martinez, R. Perez, and J. Plaza, “Spatial/spectral endmember extraction by multidimensional morphological operations,” IEEE transactions on geoscience and remote sensing, vol. 40, pp. 2025–2041, Sept. 2002.

    Article  Google Scholar 

  5. A. Ifarraguerri and C.-I. Chang, “Multispectral and hyperspectral image analysis with convex cones,” IEEE transactions on geoscience and remote sensing, vol. 37, pp. 756–770, Mar. 1999.

    Article  Google Scholar 

  6. M. Lennon, G. Mercier, M.-C. Mouchot, and L. Hubert-Moy, “Spectral unmixing of hyperspectral images with the Independent Component Analysis and wavelet packets,” in IGARSS, vol. 6, July 1999, pp. 2896–2898.

    Google Scholar 

  7. C. J. Burges, “A tutorial on support vector machines for pattern recognition,” in Data mining and knowledge discovery, U. Fayyad, Ed. Kluwer Academic, 1998, pp. 1–3.

    Google Scholar 

  8. V. N. Vapnick, Statistical Learning Theory. John Wiley and Sons Inc., 1998.

    Google Scholar 

  9. C. Huang, L. S. Davis, and J. R. G. Townshend, “An assessement of support vector machines for land cover classifiocation,” Int. J. Remote sensing, vol. 23, no. 4, pp. 725–749, 2002.

    Article  Google Scholar 

  10. J. A. Gualtieri and R. F. Cromp, “Support vector machines for hyperspectral remote sensing classification,” in Proceedings of the SPIE, vol. 3584, 1999, pp. 221–232.

    Article  Google Scholar 

  11. F. Melgani and L. Bruzzone, “Support vector machines for classification of hyperspectral remote sensing images,” in IGARSS, 2002.

    Google Scholar 

  12. M. Lennon, G. Mercier, and L. Hubert-Moy, “Classification of hyperspectral images with nonlinear filtering and support vector machines,” in IGARSS, 2002.

    Google Scholar 

  13. G. Hughes, “On the mean accuracy of statistical pattern recognition,” IEEE transactions on information theory, vol. 14, no. 1, pp. 55–63, 1968.

    Article  Google Scholar 

  14. G. Smits and E. Jordaan, “Improved SVM regression using mixtures of kernels,” in IJCNN, 2002.

    Google Scholar 

  15. G. Mercier and M. Lennon, “Support Vector Machines for hyperspectral image classification with spectral-based kernels,” in IGARSS, 2003.

    Google Scholar 

  16. A. Gersho and R. Gray, Vector Quantization and Signal Compression. Klower Academic Publisher, 1992.

    Google Scholar 

  17. M. Ryan and J. Arnold, “The lossless compression of AVIRIS images by vector quantization,” IEEE transactions on geoscience and remote sensing, vol. 35, no. 3, pp. 546–550, May 1997.

    Article  Google Scholar 

  18. S.-E. Qian, A. Hollinger, D. Williams, and D. Manak, “3D data compression of hyperspectral imagery using vector quantization with NDVI-based multiple codebooks,” in IGARSS, 1998.

    Google Scholar 

  19. A. Czihò, B. Solaiman, G. Cazuguel, C. Roux, and I. Loványi, “Kohonen’s self organizing feature maps with variable learning rate. application to image compression,” in 3rdinternational workshop on Image and Signal Processing, Santorini, Greece, 1997.

    Google Scholar 

  20. T. Kohonen, “The self-organizing map,” Proceedings of the IEEE, vol. 78, no. 9, pp. 1464–1480, September 1990.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Mercier, G., Lennon, M. (2006). Joint Classification and Compression of Hyperspectral Images. In: Motta, G., Rizzo, F., Storer, J.A. (eds) Hyperspectral Data Compression. Springer, Boston, MA. https://doi.org/10.1007/0-387-28600-4_7

Download citation

  • DOI: https://doi.org/10.1007/0-387-28600-4_7

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-28579-5

  • Online ISBN: 978-0-387-28600-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics