Skip to main content

The ø29 DNA Packaging Motor

Seeking the Mechanism

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

The Bacillus subtilis bacteriophage ø29 research team in Minneapolis has marveled at (and reveled in) the intricacies of ø29 assembly for more than 30 years. Here we highlight the current state of knowledge of ø29 DNA packaging. We describe the in vitro packaging system and focus on recent advances that address the mechanism of the packaging motor. Among advances, the head-tail connector has been visualized in proheads and the packaging motor resolved in partially packaged particles by electron microscopy, the structure of the connector has been solved by X-ray crystallography, and the force-velocity relationship of the motor has been established in single molecule studies. A challenge in the future is to determine the structure and interaction of motor components as well as the conformational changes in these components during energy transduction that define the mechanism of DNA translocation.

The compaction of ø29 DNA by more than 100-fold in length during packaging into the prohead is remarkable in that it overcomes the entropic, electrostatic and bending energies of DNA. The ø29 packaging motor is a multisubunit protein-RNA complex at the prohead portal vertex. The motor, driven by ATP hydrolysis, is force-generating and highly processive, and it opposes a strong internal force that builds up within the capsid as DNA is compressed. The motor can work against loads of 57 picoNewtons on average, making it one of the strongest molecular motors yet reported. We aim to identify and characterize the intermediates during the assembly and function of the motor and to determine the structure of each component of the motor at atomic resolution.

A brief overview of the ø29 DNA packaging system follows, and accordingly citation of published work is highly selective. For more detail, refer to a recent comprehensive review of ø29 DNA packaging.1 Also, a comparison of all the bacteriophage DNA packaging systems under study has been addressed (Jardine and Anderson, in press).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Grimes S, Jardine PJ, Anderson D. Bacteriophage ø29 DNA packaging. Adv Virus Res 2002; 58:255–294.

    Article  PubMed  CAS  Google Scholar 

  2. Rajagopal BS, Reilly BE, Anderson DL. Bacillus subtilis mutants defective in bacteriophage ø29 head assembly. J Bacteriol 1993; 175:2357–2362.

    PubMed  CAS  Google Scholar 

  3. Tao Y, Olson NH, Xu W et al. Assembly of a tailed bacterial virus and its genome release studied in three dimensions. Cell 1998; 95:431–437.

    Article  PubMed  CAS  Google Scholar 

  4. Guo P, Erickson S, Xu W et al. Regulation of the phage ø29 pro head shape and size by the portal vertex. Virology 1991; 183:366–373.

    Article  PubMed  CAS  Google Scholar 

  5. Simpson AA, Tao Y, Leiman PG et al. Structure of the bacteriophage ø29 DNA packaging motor. Nature 2000; 408:745–750.

    Article  PubMed  CAS  Google Scholar 

  6. Guasch A, Pous J, Ibarra B et al. Detailed architecture of a DNA translocating machine: The high-resolution structure of the bacteriophage ø29 connector particle. J Mol Biol 2002; 315:663–676.

    Article  PubMed  CAS  Google Scholar 

  7. Guasch A, Pous J, Ibarra B et al. (Note to ref. 6) Detailed architecture of a DNA translocating machine: The high-resolution structure of the bacteriophage ø29 connector particle. J Mol Biol 2002; 321:379–380.

    Article  CAS  Google Scholar 

  8. Simpson AA, Leiman PG, Tao Y et al. Structure determination of the head-tail connector of bac teriophage ø29. Acta Cryst 2001; D57:1260–1269.

    CAS  Google Scholar 

  9. Guo P, Erickson S, Anderson DL. A small viral RNA is required for in vitro packaging of bacte riophage ø29 DNA. Science 1987; 236:690–694.

    Article  PubMed  CAS  Google Scholar 

  10. Wichitwechkarn J, Bailey S, Bodley JW et al. Prohead RNA of bacteriophage ø29: Size, stoichiometry, and biological activity. Nucl Acids Res 1989; 17:3459–3468.

    Article  PubMed  CAS  Google Scholar 

  11. Guo P, Bailey S, Bodley JW et al. Characterization of the small RNA of the bacteriophage ø29 DNA packaging machine. Nucl Acids Res 1987; 15:7081–7090.

    Article  PubMed  CAS  Google Scholar 

  12. Wichitwechkarn J, Johnson D, Anderson D. Mutant prohead RNAs in the in vitro packaging of bacteriophage ø29 DNA-gp3. J Mol Biol 1992; 223:991–998.

    Article  PubMed  CAS  Google Scholar 

  13. Reid RJD, Bodley JW, Anderson D. Identification of bacteriophage ø29 prohead RNA domains necessary for in vitro DNA-gp3 packaging. J Biol Chem 1994; 269:9084–9089.

    PubMed  CAS  Google Scholar 

  14. Reid RJD, Zhang F, Benson S et al. Probing the structure of bacteriophage ø29 prohead RNA with specific mutations. J Biol Chem 1994; 269:18656–18661.

    PubMed  CAS  Google Scholar 

  15. Zhang C, Lee CS, Guo P. The proximate 5′ and 3′ ends of the 120-base viral RNA (pRNA) are crucial for the packaging of bacteriophage ø29. Virol 1994; 201:77–85.

    Article  CAS  Google Scholar 

  16. Zhang C, Tellinghuisen T, Guo P. Use of circular permutation to assess six bulges and four loops of DNA-packaging pRNA of bacteriophage ø29. RNA 1997; 3:315–323.

    PubMed  CAS  Google Scholar 

  17. Zhang F, Lemieux S, Wu X et al. Function of hexameric RNA in packaging of bacteriophage ø29 DNA in vitro. Mol Cell 1998; 2:141–147.

    Article  PubMed  CAS  Google Scholar 

  18. Guo P, Zhang C, Chen C et al. Inter-RNA interaction of phage ø29 pRNA to form a hexameric complex for viral DNA transportation. Mol Cell 1998; 2:149–155.

    Article  PubMed  CAS  Google Scholar 

  19. Chen C, Sheng S, Shao Z et al. A dimer as a building block in assembling RNA. J Biol Chem 2000; 275:17510–17516.

    Article  PubMed  CAS  Google Scholar 

  20. Morais MC, Tao Y, Olson NH et al. Cryo-EM image reconstruction of symmetry mismatches in bacteriophage ø29. J Struct Biol 2001; 135:38–46.

    Article  PubMed  CAS  Google Scholar 

  21. Ibarra B, Caston JR, Llorca O et al. Topology of the components of the DNA packaging machinery in the phage ø29 prohead. J Mol Biol 2000; 298:807–815.

    Article  PubMed  CAS  Google Scholar 

  22. Guo P, Peterson C, Anderson D. Prohead and DNA-gp3-dependent ATPase activity of the DNA packaging protein gpl6 of bacteriophage ø29. J Mol Biol 1987; 197:229–236.

    Article  PubMed  CAS  Google Scholar 

  23. Grimes S, Anderson D. RNA dependence of the bacteriophage ø29 DNA packaging ATPase. J Mol Biol 1990; 215:559–566.

    Article  PubMed  CAS  Google Scholar 

  24. Bjornsti MA, Reilly BE, Anderson DL. Bacteriophage ø29 proteins required for in vitro DNA-gp3 packaging. J Virol 1984; 50:766–772.

    PubMed  CAS  Google Scholar 

  25. Chen C, Guo P. Sequential action of six virus-encoded DNA-packaging RNAs during phage ø29 genomic DNA translation. J Virol 1997; 71:3864–3871.

    PubMed  CAS  Google Scholar 

  26. Meijer WJJ, Horcajadas JA, Salas M. ø29 Family of Phages. Microbiol and Mol Biol Rev 2001; 65:261–287.

    Article  CAS  Google Scholar 

  27. Grimes S, Anderson D. The bacteriophage ø29 packaging proteins supercoil the DNA ends. J Mol Biol 1997; 266:901–914.

    Article  PubMed  CAS  Google Scholar 

  28. Grimes S, Anderson D. In vitro packaging of bacteriophage ø29 DNA restriction fragments and the role of the terminal protein gp3. J Mol Biol 1989; 209:91–100.

    Article  PubMed  CAS  Google Scholar 

  29. Bjornsti MA, Reilly BE, Anderson DL. Morphogenesis of bacteriophage ø29 of Bacillus subtilis: Oriented and quantized in vitro packaging of DNA-gp3. J Virol 1983; 45:383–396.

    PubMed  CAS  Google Scholar 

  30. Turnquist S, Simon M, Egelman E et al. Supercoiled DNA wraps around the bacteriophage ø29 head-tail connector. Proc Natl Acad Sci USA 1992; 89:10479–10483.

    Article  PubMed  CAS  Google Scholar 

  31. Hendrix RW. Symmetry mismatch and DNA packaging in large bacteriophages. Proc Natl Acad Sci USA 1978; 75:4779–4783.

    Article  PubMed  CAS  Google Scholar 

  32. Muller DJ, Engel A, Carrascosa JL et al. The bacteriophage ø29 head-tail connector imaged at high resolution with the atomic force microscope in buffer solution. EMBO J 1997; 16:2547–2553.

    Article  PubMed  CAS  Google Scholar 

  33. Kinosita Jr K, Yasuda R, Noji H et al. F1-ATPase: A rotary motor made of a single molecule. Cell 1998; 93:21–24.

    Article  PubMed  CAS  Google Scholar 

  34. Silverman MR, Simon MI. Flagellar rotation and the mechanism of bacterial motility. Nature 1974; 249:73–74.

    Article  PubMed  CAS  Google Scholar 

  35. Vale RD, Milligan RA. The way things move: Looking under the hood of molecular motor proteins. Science 2000; 288:88–95.

    Article  PubMed  CAS  Google Scholar 

  36. Smith DE, Tans SJ, Smith SJ et al. The bacteriophage ø29 portal motor can package DNA against a large internal force. Nature 2001; 413:748–752.

    Article  PubMed  CAS  Google Scholar 

  37. Earnshaw WC, Casjens SR. DNA packaging by the double-stranded DNA bacteriophages. Cell 1980; 21:319–331.

    Article  PubMed  CAS  Google Scholar 

  38. Alberts B, Miaki-Lye R. Unscrambling the puzzle of biological machines: The importance of the details. Cell 1992; 68:415–420.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Anderson, D., Grimes, S. (2005). The ø29 DNA Packaging Motor. In: Viral Genome Packaging Machines: Genetics, Structure, and Mechanism. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-28521-0_7

Download citation

Publish with us

Policies and ethics