Skip to main content

Machine Learning

  • Chapter
Search Methodologies

Abstract

Machine learning is a very active sub-field of artificial intelligence concerned with the development of computational models of learning. Machine learning is inspired by the work in several disciplines: cognitive sciences, computer science, statistics, computational complexity, information theory, control theory, philosophy, and biology. Simply speaking, machine learning is learning by machine. From a computational point of view, machine learning refers to the ability of a machine to improve its performance based on previous results. From a biological point of view, machine learning is the study of how to create computers that will learn from experience and modify their activity based on that learning as opposed to traditional computers whose activity will not change unless the programmer explicitly changes it.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Breiman, L., Friedman, J., Olshen, R. A. and Stone, P. J., 1984, Classification and Regression Trees, Wadsworth, Belmont, CA.

    MATH  Google Scholar 

  • Breiman, L., 1996, Bagging predictors, Machine Learn. 24:123–140.

    MATH  MathSciNet  Google Scholar 

  • Cheng, J., Greiner, R., Kelly, J., Bell, D. A. and Liu, W., 2002, Learning Bayesian networks from data: an information-theory based approach, Artif. Intell. 137:43–90.

    Article  MATH  MathSciNet  Google Scholar 

  • Dietterich, T. G., 1997, Machine-learning research: four current directions, AI Magazine 18:97–136.

    Google Scholar 

  • Domingos, P. and Pazzani, M, 1996, Beyond independence: conditions for the optimality of the simple Bayesian classifier, in: Proc. 13th Int. Conf. on Machine Learning, L. Saitta, ed., Morgan Kaufmann, San Mateo, CA, pp. 105–112.

    Google Scholar 

  • Elkan, C., 1997, Boosting and naive Bayesian learning, Technical Report, Department of Computer Science and Engineering, University of California.

    Google Scholar 

  • Feigenbaum, E. A., 1961, The simulation of verbal learning behavior, in: Proc. Western Joint Computer Conf., pp. 121–131.

    Google Scholar 

  • Fogel, L. J., Owens, A. J. and Walsh, M. J., 1966, Artificial Intelligence Through Simulated Evolution, Wiley, New York.

    MATH  Google Scholar 

  • Geman, S., Bienenstock, E. and Doursat, R, 1992, Neural networks and the bias/variance dilemma, Neural Comput. 4:1–58.

    Google Scholar 

  • Hebb, D. O., 1949, The Organization of Behavior: A Neurophysiological Theory, Wiley, New York.

    Google Scholar 

  • Heckerman, D., 1998, A tutorial on learning with Bayesian networks, in: Learning in Graphical Models, M. I. Jordan, ed., Kluwer, Dordrecht.

    Google Scholar 

  • Hopfield, J. J., 1982, Neural networks and physical systems with emergent collective computational abilities, Proc. Natl Acad. Sci. USA 79:2554–2558.

    Article  MathSciNet  Google Scholar 

  • Hopfield, J. J. and Tank, D. W., 1985, Neural computation of decisions in optimization problems, Biol. Cybernet. 52:141–152.

    MATH  MathSciNet  Google Scholar 

  • Hunt, E. B., Marin, J. and Stone, P. T., 1966, Experiments in Induction, Academic, New York.

    Google Scholar 

  • Kaelbling, L. P., Littman, M. L. and Moore, A. W., 1996, Reinforcement learning: a survey, J. Artif. Intell. Res. 4:237–285.

    Google Scholar 

  • Kodratoff, Y. and Michalski, R. S., eds, 1990, Machine Learning—An Artificial Intelligence Approach, Vol. 3, Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Langley, P., 1996, Elements of Machine Learning, Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Langley, P. and Simon, H., 1995, Applications of machine learning and rule induction, Commun. ACM 38:54–64.

    Article  Google Scholar 

  • Lavrač, N. and Džeroski, S., 1994, Inductive Logic Programming: Techniques and Applications, Ellis Horwood, Chichester.

    MATH  Google Scholar 

  • Michalski, R. S., Carbonell, J. G. and Mitchell, T. M., eds, 1983, Machine Learning—An Artificial Intelligence Approach, Vol. 1, Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Michalski, R. S., Carbonell, J. G. and Mitchell, T. M., eds, 1986, Machine Learning—An Artificial Intelligence Approach, Vol. 2, Morgan Kaufmann, San Mateo, CA.

    MATH  Google Scholar 

  • McCulloch, W. S. and Pitts, W., 1943, A logical calculus of the ideas immanent in nervous activity, Bull. Math. Biophys. 5:115–137.

    Article  MATH  MathSciNet  Google Scholar 

  • Michie, D., Spiegelhalter, D. J. and Taylor, C. C., 1994, Machine Learning, Neural and Statistical Classification, Ellis Horwood, London.

    MATH  Google Scholar 

  • Minsky, M. L. and Papert, S., 1969, Perceptrons: An Introduction to Computational Geometry, MIT Press, Cambridge, MA.

    MATH  Google Scholar 

  • Mitchell, T. M., 1997, Machine Learning, McGraw-Hill, New York.

    MATH  Google Scholar 

  • Muggleton, S. H., 1995, Inverse entailment and progol, New Generation Comput. (Special issue on Inductive Logic Programming) 13:245–286.

    Article  Google Scholar 

  • Muggleton, S. H. and Buntine, W., 1988, Machine invention of first-order predicates by inverting resolution, in: Proc. 5th Int. Conf. on Machine Learning, Morgan Kaufmann, San Mateo, CA, pp. 339–352.

    Google Scholar 

  • Quinlan, J. R., 1986, Introduction to decision tree, Machine Learn. 1:81–106.

    Google Scholar 

  • Quinlan, J. R., 1990, Learning logical definitions from relations, Machine Learn. 5:239–266.

    Google Scholar 

  • Quinlan, J. R., 1993, C4.5: Programs for Machine Learning, Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E. and Williams, R. J., 1986, Learning internal representations by error propagation, in: Parallel Distributed Processing: Explorations in the Microstructures of Cognition, Vol. 1, D. E. Rumelhart and J. L. McClelland, eds, MIT Press, Cambridge, MA, pp. 318–362.

    Google Scholar 

  • Rosenblatt, F., 1962, Principles of Neurodynamics: Perceptrons and the Theory of Brain Mechanisms, Spartan, Chicago, IL.

    MATH  Google Scholar 

  • Rumelhart, D. E. and McClelland, J. L., eds, 1986, Parallel Distributed Processing: Explorations in the Microstructures of Cognition, MIT Press, Cambridge, MA.

    Google Scholar 

  • Russell, S. and Norvig, P., 2002, Artificial Intelligence: A Modern Approach, Prentice-Hall, Englewood Cliffs, NJ.

    Google Scholar 

  • Samuel, A. L., 1959, Some studies in machine learning using the game of checkers, IBM J. Res. Dev. 3:210–229.

    Article  MathSciNet  Google Scholar 

  • Schapire, R. E., 1990, The strength of weak learnability, Machine Learn. 5:197–227.

    Google Scholar 

  • Shavlik, J. and Dietterich, T. (eds), 1990, Readings in Machine Learning, Morgan Kaufmann, San Mateo, CA.

    Google Scholar 

  • Schwefel, H.-P., 1981, Numerical Optimization of Computer Models, Wiley, Chichester.

    MATH  Google Scholar 

  • Schwefel, H.-P., 1995, Evolution and Optimum Seeking, Wiley, New York.

    Google Scholar 

  • Stone, M., 1974, Cross-validatory choice and assessment of statistical predictions, J. R. Statist. Soc. 36:111–147.

    MATH  Google Scholar 

  • Sutton, R. S. and Barto, A. G., 1998, Reinforcement Learning: An Introduction, MIT Press, Cambridge, MA.

    Google Scholar 

  • Turing, A., 1950, Computing machinery and intelligence, Mind 59:433–460.

    Article  MathSciNet  Google Scholar 

  • Vapnik, V. N., 1995, The Nature of Statistical Learning Theory, Springer, New York.

    MATH  Google Scholar 

  • Wolpert, D. H. and Macready, W. G., 1997, No free lunch theorems for optimization, IEEE Trans. Evol. Comput. 1:67–82.

    Article  Google Scholar 

  • Yao, X., 1991, Evolution of connectionist networks, in: Preprints of the Int. Symp. on AI, Reasoning and Creativity (Griffith University, Queensland, Australia), T. Dartnall, ed., pp. 49–52.

    Google Scholar 

  • Yao, X., 1993a, A review of evolutionary artificial neural networks, Int. J. Intell. Syst. 8:539–567. 28:417–425.

    Google Scholar 

  • Yao, X., 1993b, An empirical study of genetic operators in genetic algorithms, Microprocess. Microprogram. 38:707–714.

    Article  Google Scholar 

  • Yao, X., 1994, The evolution of connectionist networks, in: Artificial Intelligence and Creativity, T. Dartnall, ed., Kluwer, Dordrecht, pp. 233–243.

    Google Scholar 

  • Yao, X., 1995, Evolutionary artificial neural networks, in: Encyclopedia of Computer Science and Technology, Vol. 33, A. Kent and J. G. Williams, ed., Dekker, New York, pp. 137–170.

    Google Scholar 

  • Yao, X., 1999, Evolving artificial neural networks, Proc. IEEE 87:1423–1447.

    Article  Google Scholar 

  • Yao, X. and Liu, Y., 1997, A new evolutionary system for evolving artificial neural networks, IEEE Trans. Neural Networks 8:694–713.

    Article  Google Scholar 

  • Yao, X. and Liu, Y., 1998, Making use of population information in evolutionary artificial neural networks, IEEE Trans. Syst., Man Cybernet. B 28:417–425.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Yao, X., Liu, Y. (2005). Machine Learning. In: Burke, E.K., Kendall, G. (eds) Search Methodologies. Springer, Boston, MA. https://doi.org/10.1007/0-387-28356-0_12

Download citation

Publish with us

Policies and ethics