Skip to main content

Attentional Activation of Cortico-Reticulo-Thalamic Pathways Revealed by Fos Imaging

  • Chapter
Plasticity in the Visual System
  • 580 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Agarwala S, Kalil RE (1998) Axotomy-induced neuronal death and reactive astrogliosis in the lateral geniculate nucleus following a lesion of the visual cortex in the rat. J Comp Neurol 392:252–263.

    Article  CAS  PubMed  Google Scholar 

  • Ahlsén G, Lindström S (1983) Corticofugal projection to perigeniculate neurons in the cat. Acta Physiol Scand 118:181–184.

    Article  PubMed  Google Scholar 

  • Ahlsén G, Lindström S, Sybirska E (1978) Subcortical axon collaterals of principal cells in the lateral geniculate body of the cat. Brain Res 156:106–109.

    Article  PubMed  Google Scholar 

  • Anderson B (1994) the volume of the cerebellar molecular layer predicts attention to novelty in rats. Brain Research 641:160–162.

    Article  CAS  PubMed  Google Scholar 

  • Asanuma C (1992) Noradrenergic innervation of the thalamic reticular nucleus: A light and electron miscroscopic immunohistochemical stydy in rats. JCompNeurol 319:299–311.

    CAS  Google Scholar 

  • Bal T, M. vK, McCormick D (1995) Role or the ferret perigeniculate nucleus in the generation of synchronized oscillations in vitro. J Physiol 483:665–685.

    CAS  PubMed  Google Scholar 

  • Bourassa J, Deschênes M (1995) Corticothalamic projections from the primary visual cortex in rats: A single fiber study using biocytin as an anterograde tracer. Neuroscience 253:253–263.

    Article  Google Scholar 

  • Brefczynski JA, DeYoe EA (1999) A physiological correlate of the’ spotlight’ of visual attention. Nature Neuroscience 2:370–374.

    Article  CAS  PubMed  Google Scholar 

  • Burne RA, Parnavelas JG, Lin C-S (1984) Response properties of neurons in the visual cortex of the rat. ExpBrain Res 53:374–383.

    CAS  Google Scholar 

  • Chaudhuri A (1997) Neural activity mapping with inducible transcription factors. Neuroreport 8:R3–R7.

    Article  Google Scholar 

  • Chaudhuri A, Zangenehpour S, Rahbar-Dehgan F, Ye F (2000) Molecular maps of neural activity and quiescence. Acta Neurobiol Exp (Wars) 60:403–410.

    CAS  Google Scholar 

  • Clayton DF (2000) The Genomic Action Potential. Neurobiology of Learning and Memory 74:185–216.

    Article  CAS  PubMed  Google Scholar 

  • Coleman KA, Mitrofanis J (1996) Organization of the visual reticular thalamic nucleus of the rat. EurJNeurosci 8:388–404.

    CAS  Google Scholar 

  • Coogan TA, Burkhalter A (1993) Hierarchical organization of areas in rat visual cortex. JNeurosci 13:3749–3772.

    CAS  Google Scholar 

  • Cornwall J, Cooper JD, Phillipson OT (1990) Projections to the rostral reticular thalamic nucleus in the rat. ExpBrain Res 80:157–171.

    CAS  Google Scholar 

  • Crick F (1984) Function of the thalamic reticular complex: The searchlight hypothesis. ProcNatlAcadSciUSA 81:4586–4590.

    CAS  ADS  Google Scholar 

  • Cudeiro J, Sillito AM (1996) Spatial frequency tuning of orientation-discontinuity-sensitive corticofugal feedback to the cat lateral geniculate nucleus. J Physiol 490 (Pt 2):481–492.

    CAS  PubMed  Google Scholar 

  • Daffner KR, Mesulam MM, Scinto LFM, Cohen LG, Kennedy BP, West WC, Holcomb PJ (1998) Regulation of attention to novel stimuli by frontal lobes: an event-related potential study. Neuroreport 9:787–791.

    Article  CAS  PubMed  Google Scholar 

  • De Curtis M, Spreafico R, Avanzini G (1989) Excitatory amino acids mediate responses elicited in vitro by stimulation of cortical afferents to reticularis thalamic neurons in the rat. Neuroscience 33:275–284.

    Article  PubMed  Google Scholar 

  • Deschênes M, Hu B (1990) Electrophysiology and pharmacology of the corticothalamic input to lateral thalamic nuclei: an intracellular study in the cat. EuropJNeurosci 2:140–152.

    Google Scholar 

  • Desimone R, Duncan J (1995) Neural mechanisms of selective visual attention. AnnuRevNeurosci 18:193–222.

    CAS  Google Scholar 

  • Dias R, Honey RC (2002) Involvement of the rat medial prefrontal cortex in novelty detection. Behav Neurosci 116:498–503.

    Article  CAS  PubMed  Google Scholar 

  • Domenici L, Berardi N, Carmignoto G, Vantini G, Maffei L (1991) Nerve growth factor prevents the amblyopic effects of monocular deprivation. Proc Natl Acad Sci USA 88:8811–8815.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Ehret G, Fischer R (1991) Neuronal activity and tonotopy in the auditory system visualized by c-fos gene expression. Brain Res 567:350–354.

    Article  CAS  PubMed  Google Scholar 

  • Fagiolini M, Pizzorusso T, Berardi N, Domenici L, Maffei L (1994) Functional postnatal development of the rat primary visual cortex and the role of visual experience: Dark rearing and monocular deprivation. Vision Res 34:709–720.

    Article  CAS  PubMed  Google Scholar 

  • Farrell WJ, Alberts JR (2002) Maternal responsiveness to infant Norway rat (Rattus norvegicus) ultrasonic vocalizations during the maternal behavior cycle and after steroid and experiential induction regimens. J Comp Psychol 116:286–296.

    Article  PubMed  Google Scholar 

  • Friauf E (1992) Tonotopic order in the adult and developing auditory system of the rat as shown by c-fos immunocytochemistry. EuropJNeurosci 4:798–812.

    Google Scholar 

  • Fukuda Y, Sumitomo I, Sugitani M, Iwama K (1979) Receptive-field properties of cells in the dorsal part of the albino rat’s lateral geniculate nucleus. JpnJPhysiol 29: 283–307.

    CAS  Google Scholar 

  • Funke K, Eysel UT, FitzGibbon T (1991) Retinogeniculate transmission by NMDA and non-NMDA receptors in the cat. Brain Res 547:229–238.

    Article  CAS  PubMed  Google Scholar 

  • Gabbott PLA, Somogyi J, Stewart MG, Hamori J (1986) Neurons in the dorsal lateral geniculate nucleus of the rat: characterisation using a combination of Golgiimpregnation and GABA-immunocytochemistry. ExplBrain Res 61:311–322.

    CAS  Google Scholar 

  • Ghosh A, Ginty DD, Bading H, Greenberg ME (1994) Calcium regulation of gene expression in neuronal cells. J Neurobiol 25:294–303.

    Article  CAS  PubMed  Google Scholar 

  • Gilbert CD (1993) Circuitry, architecture, and functional dynamics of visual cortex. Cereb Cortex 3:373–386.

    Article  CAS  PubMed  Google Scholar 

  • Golshani P, Liu X-B, Jones EG (2001) Differences in quantal amplitude reflect GluR4-subunit number at corticothalamic synapses on two populations of thalamic neurons. Proc Natl Acad Sci USA 98:4172–4177.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Gonzalo-Ruiz A, Lieberman AR (1995) Topographic organization of projections from the thalamic reticular nucleus to the anterior thalamic nuclei in the rat. Brain Res Bull 37:17–35.

    Article  CAS  PubMed  Google Scholar 

  • Guandalini P (1998) The corticocortical projections of the physiologically defined eye field in the rat medial frontal cortex. Brain Res Bull 47:377–385.

    Article  CAS  PubMed  Google Scholar 

  • Hale PT, Sefton AJ, Baur LA, Cottee LJ (1982) Interrelations of the rat’s thalamic reticular and dorsal lateral geniculate nuclei. ExpBrain Res 45:217–229.

    CAS  Google Scholar 

  • Hayhow WR, Sefton A, Webb C (1962) Primary optic centers in the rat in relation to the terminal distribution of the crossed and uncrossed optic nerve fibers. J Comp Neurol 118:295–322.

    Article  CAS  PubMed  Google Scholar 

  • Herdegen T, Sandkuhler J, Gass P, Kiessling M, Bravo R, Zimmermann M (1993) Jun, fos, krox, and creb transcription factor proteins in the rat cortex: basal expression and induction by spreading depression and epileptic seizures. JCompNeurol 333:271–288.

    CAS  Google Scholar 

  • Herdegen T, Kovary K, Buhl A, Bravo R, Zimmermann M, Gass P (1995) Basal expression of the inducible transcription factors c-jun, junB, junD, c-fos, fosB and krox-24 in the adult rat brain. JCompNeurol 354:39–56.

    CAS  Google Scholar 

  • Ignashchenkova A, Dicke PW, Haarmeier T, Thier P (2004) Neuron-specific contribution of the superior colliculus to overt and covert shifts of attention. Nat Neurosci 7:56–64.

    Article  CAS  PubMed  Google Scholar 

  • Ito M, Gilbert CD (1999) Attention modulates contextual influences in the primary visual cortex of alert monkeys. Neuron 22:593–604.

    Article  CAS  PubMed  Google Scholar 

  • Johnson RR, Burkhalter A (1992) Evidence for excitatory amino acid neurotransmitters in the geniculo-cortical pathway and local projections within rat primary visual cortex. ExpBrain Res 89:20–30.

    CAS  Google Scholar 

  • Jones EG (1975) Some aspects of the organization of the thalamic reticular complex. JCompNeurol 162:285–308.

    CAS  Google Scholar 

  • Kaczmarek L, Chaudhuri A (1997) Sensory regulation of immediate-early gene expression in mammalian visual cortex: implications for functional mapping and neural plasticity. Brain Res Brain Res Rev 23:237–256.

    Article  CAS  PubMed  Google Scholar 

  • Kayama Y, Shosaku A, Doty R, W. (1984) Cryogenic blockade of the visual corticothalamic projection in the rat. ExpBrain Res 54:157–165.

    CAS  Google Scholar 

  • Kiorpes L, Movshon JA (1996) Amblyopia: A developmental disorder of the central visual pathways. Cold Spring Harbor Symposia on Quantitative Biology 41:39–48.

    Google Scholar 

  • Krauzlis RJ, Liston D, Carello CD (2004) Target selection and the superior colliculus: goals, choices and hypotheses. Vision Res 44:1445–1451.

    Article  PubMed  Google Scholar 

  • Kustov AA, Robinson DL (1996) Shared neural control of attentional shifts and eye movements. Nature 384:74–77.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Lashley KS (1938) The mechanism of vision. XV. Preliminary studies of the rat’s capacity for detailed vision. J gen Psychol 18:123–193.

    Article  Google Scholar 

  • Lee SM, Friedberg MH, Ebner FF (1994) The role of GABA-mediated inhibition in the rat ventral posterior medial thalamus. JNeurophysiol 71:1702–1715.

    CAS  Google Scholar 

  • Li S, Cullen WK, Anwyl R, Rowan MJ (2003) Dopamine-dependent facilitation of LTP induction in hippocampal CA1 by exposure to spatial novelty. Nat Neurosci 6:526–531.

    CAS  PubMed  Google Scholar 

  • Liu XB, Jones EG (1999) Predominance of corticothalamic synaptic inputs to thalamic reticular nucleus neurons in the rat. J Comp Neurol 414:67–79.

    Article  CAS  PubMed  Google Scholar 

  • Lozsadi DA, Gonzalez-Soriano J, Guillery RW (1996) The course and termination of corticothalamic fibres arising in the visual cortex of the rat. Eur J Neurosci 8:2416–2427.

    Article  CAS  PubMed  Google Scholar 

  • Marks GA, Roffwarg HP (1991) Cholinergic modulation of responses to glutamate in the thalamic reticular nucleus of the anesthetized rat. Brain Res 557:48–56.

    Article  CAS  PubMed  Google Scholar 

  • Marks GA, Roffwarg HP (1993) Spontaneous activity in the thalamic reticular nucleus during the sleep/wake cycle of the freely-moving rat. Brain Research 623:241–248.

    Article  CAS  PubMed  Google Scholar 

  • McAdams CJ, Maunsell JHR (1999) Effects of attention on orientation-tuning functions of single neurons in macaque cortical area V4. J Neurosci 19:431–441.

    CAS  PubMed  Google Scholar 

  • McAlonan K, Brown VJ, Bowman EM (2000) Thalamic reticular nucleus activation reflects attentional gating during classical conditioning. J Neurosci 20:8897–8901.

    CAS  PubMed  Google Scholar 

  • McCormick DA (1989) Cholinergic and noradrenergic modulation of thalamocortical processing. Trends in Neurosci 12:215–221.

    Article  CAS  Google Scholar 

  • McCormick DA, von Krosigk M (1992) Corticothalamic activation modulates thalamic firing through glutamate “metabotropic” receptors. ProcNatlAcadSciUSA 89:2774–2778.

    CAS  ADS  Google Scholar 

  • McCormick DA, Bal T (1994) Sensory gating mechanisms of the thalamus. Current Opinion Neurobiol 4:550–556.

    Article  CAS  Google Scholar 

  • McCormick DA, Bal T (1997) Sleep and arousal: Thalamocortical mechanisms. Annu Rev Neurosci 20:185.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM (1973) Evoked responses in the rat’s visual cortex to contralateral, ipsilateral, and restricted photic stimulation. Brain Res 53:192–196.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM (1981) Comparative studies on the visual cortex. In: Cortical Sensory Organization. Vol. 2 Multiple Visual Areas (Woolsey CN, ed), pp 33–81. Clifton, N.J.: The Humana Press.

    Google Scholar 

  • Montero VM (1983) Ultrastructural identification of axon terminals from the thalamic reticular nucleus in the medial geniculate body in the rat: An EM autoradiographic study. ExpBrain Res 51:338–342.

    Google Scholar 

  • Montero VM (1989) Ultrastructural identification of synaptic terminals from cortical axons and from collateral axons of geniculo-cortical relay cells in the perigeniculate nucleus of the cat. ExpBrain Res 75:65–72.

    CAS  Google Scholar 

  • Montero VM (1990) Quantitative immunogold analysis reveals high glutamate levels in synaptic terminals of retino-geniculate, cortico-geniculate, and geniculo-cortical axons in the cat. Visual Neurosci 4:437–443.

    Article  CAS  Google Scholar 

  • Montero VM (1991) A quantitative study of synaptic contacts on interneurons and relay cells of the cat lateral geniculate nucleus. ExpBrain Res 86:257–270.

    CAS  Google Scholar 

  • Montero VM (1993) Retinotopy of cortical connections between the striate cortex and extrastriate visual areas in the brain. ExpBrain Res 94:1–15.

    CAS  Google Scholar 

  • Montero VM (1994) Quantitative immunogold evidence for enrichment of glutamate but not aspartate in synaptic terminals of retino-geniculate, geniculo-cortical, and cortico-geniculate axons in the cat. VisNeurosc 11:675–681.

    CAS  Google Scholar 

  • Montero VM (1997) C-fos induction in sensory pathways of rats exploring a novel environment: Shifts of active thalamic reticular sectors by predominant sensory cues. Neuroscience 76:1069–1081.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM (1999) Amblyopia decreases activation of the corticogeniculate pathway and visual reticularis in attentive rats: A ‘focal attention hypothesis’. Neuroscience 91:805–817.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM (2000) Attentional activation of the visual thalamic reticular nucleus depends on ‘top-down’ inputs from the primary visual cortex via corticogeniculate pathways. Brain Res 864:95–104.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM, Brugge JF (1969) Direction of movement as the significant stimulus parameter for some lateral geniculate cells in the rat. Vision Res 9:71–88.

    Article  CAS  PubMed  Google Scholar 

  • Montero, VM, Robles, L (1971) Saccadic modulation of cell discharges in the lateral geniculate nucleus. Vision Res. 11(Suppl.3): 253–268.

    Article  Google Scholar 

  • Montero VM, Scott GL (1981) Synaptic terminals in the dorsal lateral geniculate nucleus from neurons of the thalamic reticular nucleus: A light and electron microscope autoradiographic study. Neuroscience 6:2561–2577.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM, Singer W (1985) Ultrastructural identification of somata and neural processes immunoreactive to antibodies against glutamic acid decarboxylase (GAD) in the dorsal lateral geniculate nucleus of the cat. ExpBrain Res 59: 151–165.

    CAS  Google Scholar 

  • Montero VM, Wenthold RJ (1989) Quantitative immunogold analysis reveals high glutamate levels in retinal and cortical synaptic terminals in the lateral geniculate nucleus of the macaque. Neuroscience 31:639–647.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM, Jian S (1995) Induction of c-fos protein by patterned visual stimulation in central visual pathways of the rat. Brain Res 690:189–199.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM, Brugge JF, Beitel RE (1966) Visual field representation and receptive field characteristics of neurons in the dorsal lateral geniculate nucleus of the albino rat. Anat Rec 154:388.

    Google Scholar 

  • Montero VM, Brugge JF, Beitel RE (1968) Relation of the visual field to the lateral geniculate body of the albino rat. JNeurophysiol 31:221–236.

    CAS  Google Scholar 

  • Montero VM, Bravo H, Fernandez V (1973a) Striate-peristriate cortico-cortical connections in the albino and gray rat. Brain Res 53:202–207.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM, Rojas A, Torrealba F (1973b) Retinopic organization of the striate and peristriate visual cortex in the albino rat. Brain Res 53:197–201.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM, Guillery RW, Woolsey CN (1977) Retinotopic organization within the thalamic reticular nucleus demonstrated by a double label autoradiographic technique. Brain Res 138:407–421.

    Article  CAS  PubMed  Google Scholar 

  • Montero VM, Wright LS, Siegel F (2001) Increased glutamate, GABA and glutamine in lateral geniculate nucleus but not in medial geniculate nucleus caused by visual attention to novelty. Brain Res 916:152–158.

    Article  CAS  PubMed  Google Scholar 

  • Motter BC (1993) Focal attention produces spatially selective processing in visual cortical areas V1, V2, and V4 in the presence of competing stimuli. J Neurophysiol 70:909–919.

    CAS  PubMed  Google Scholar 

  • Murphy PC, Sillito AM (1996) Functional morphology of the feedback pathway from area 17 of the cat visual cortex to the lateral geniculate nucleus. J Neurosci 16:1180–1192.

    CAS  PubMed  Google Scholar 

  • O’Connor DH, Fukui MM, Pinsk MA, Kastner S (2002) Attention modulates responses in the human lateral geniculate nucleus. Nature Neurosci online 15 October 2002:1–7.

    Google Scholar 

  • Ohara PT, Lieberman AR (1981) Thalamic reticular nucleus: anatomical evidence that cortico-reticular axons establish monosynaptic contact with reticulo-geniculate projection cells. Brain Res 207:153–156.

    Article  CAS  PubMed  Google Scholar 

  • Ohara PT, Havton LA (1996) Dendritic arbors of neurons from different regions of the rat thalamic reticular nucleus share a similar orientation. Brain Res 731:236–240.

    Article  CAS  PubMed  Google Scholar 

  • Oswald CJ, Yee BK, Rawlins JN, Bannerman DB, Good M, Honey RC (2001) Involvement of the entorhinal cortex in a process of attentional modulation: evidence from a novel variant of an IDS/EDS procedure. Behav Neurosci 115:841–849.

    Article  CAS  PubMed  Google Scholar 

  • Ozen G, Augustine GJ, Hall WC (2000) Contribution of superficial layer neurons to premotor bursts in the superior colliculus. J Neurophysiol 84:460–471.

    CAS  PubMed  Google Scholar 

  • Parron C, Poucet B, Save E (2004) Entorhinal cortex lesions impair the use of distal but not proximal landmarks during place navigation in the rat. Behav Brain Res 154:345–352.

    Article  PubMed  Google Scholar 

  • Paxinos G, Watson C (1998) The rat brain in stereotaxic coordinates, Fourth Edition Edition. New York, NY: Academic Press.

    Google Scholar 

  • Peschanski M, Ralston HJ, Roudier F (1983) Reticularis thalami afferents to the ventrobasal complex of the rat thalamus: an electron microscope study. Brain Res 270:325–329.

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Saldanha J (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. III. Layer VI. Brain Res 105:533–537.

    Article  CAS  PubMed  Google Scholar 

  • Peters A, Feldman ML (1976) The projection of the lateral geniculate nucleus to area 17 of the rat cerebral cortex. I. General description. J Neurocytol 5:63–84.

    Article  CAS  PubMed  Google Scholar 

  • Pinault D, Deschênes M (1998) Anatomical evidence for a mechanism of lateral inhibition in the rat talamus. Eur J Neurosci 10:3462–3469.

    Article  CAS  PubMed  Google Scholar 

  • Pinault D, Bourassa J, Deschênes M (1995) Thalamic reticular input to the rat visual thalamus: a single fiber study using biocytin as an anterograde tracer. Brain Res 670:147–152.

    Article  CAS  PubMed  Google Scholar 

  • Posner MI (1980) Orienting of attention. Q J Exp Psychol 32:3–25.

    Article  CAS  PubMed  Google Scholar 

  • Posner MI, Pothbart MK, Digirolamo GJ (1999) Develpment of brain networks for orienting to novelty. Zh Vyssh Nerv Deyat Imen Pavlov 49:715–722.

    CAS  Google Scholar 

  • Prusky GT, Harker KT, Douglas RM, Whishaw IQ (2002) Variation in visual acuity within pigmented, and between pigmented and albino rat strains. Behav Brain Res 136:339–348.

    Article  PubMed  Google Scholar 

  • Rivadulla C, Martinez LM, Varela C, Cudeiro J (2002) Completing the corticofugal loop: A visual role for the corticogeniculate type 1 metabotropic glutamate receptor. J Neurosci 22:2956–2962.

    CAS  PubMed  Google Scholar 

  • Roelfsema PR, Lamme VAF, Spekreijse H (1998) Object-based attention in the primary visual cortex of the macaque monkey. Nature 395:376–381.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Rothblat LA, Schwartz ML, Kasdan PM (1978) Monocular deprivation in the rat: evidence for an age-related defect in visual behavior. Brain Research 158:456–460.

    Article  CAS  PubMed  Google Scholar 

  • Sagar SM, Sharp FR (1990) Light induces a Fos-like nuclear antigen in retinal neurons. Brain Res Mol Brain Res 7:17–21.

    Article  CAS  PubMed  Google Scholar 

  • Sakata S, Kitsukawa T, Kaneko T, Yamamori T, Sakurai Y (2002) Task-dependent and cell-type-specific Fos enhancement in rat sensory cortices during audio-visual discrimination. Eur J Neurosi 15:735–743.

    Article  Google Scholar 

  • Sakurai T, Okada Y (1992) Selective reduction of glutamate in the rat superior colliculus and dorsal lateral geniculate nucleus after contralateral enucleation. Brain Res 573:197–203.

    Article  CAS  PubMed  Google Scholar 

  • Sanderson KJ, Dreher B, Gayer N (1991) Prosencephalic connections of striate and extrastriate areas of rat visual cortex. ExpBrain Res 85:324–334.

    CAS  Google Scholar 

  • Sato H, Hata Y, Tsumoto T (1999) Effects of blocking non-N-methyl-D-aspartate receptors on visual responses of neurons in the cat visual cortex. Neuroscience 94: 697–703.

    Article  CAS  PubMed  Google Scholar 

  • Scalia F, Arango V (1979) Topographic organization of the projections of the retina to the pretectal region in the rat. JCompNeurol 186:271–292.

    CAS  Google Scholar 

  • Schuett S, Bonhoeffer T, Hubener M (2002) Mapping retinotopic structure in mouse visual cortex with optical imaging. J Neurosci 22:6549–6559.

    CAS  PubMed  Google Scholar 

  • Schwarz DWF, Tennigkeit F, Puil E (2000) Metabotropic transmitter actions in auditory thalamus. Acta Otolaryngol 120:251–254.

    CAS  PubMed  Google Scholar 

  • Sefton AJ, Dreher B (1985) Visual system. Sydney, Australia: Academic Press.

    Google Scholar 

  • Shapley R, So YT (1980) Is there an effect of monocular deprivation on the proportions of X and Y cells in the cat lateral geniculate nucleus? ExpBrain Res 39:41–48.

    CAS  Google Scholar 

  • Sheng M, Greenberg ME (1990) The regulation and function of c-fos and other immediate early genes in the nervous system. Neuron 4:477–485.

    Article  CAS  PubMed  Google Scholar 

  • Shosaku A, Simitomo I (1983) Auditory neurons in the rat thalamic reticular nucleus. ExpBrain Res 49:432–442.

    CAS  Google Scholar 

  • Shosaku A, Kayama Y, Sumitomo I (1984) Somatotopic organization in the rat thalamic reticular nucleus. Brain Res 311:57–63.

    Article  CAS  PubMed  Google Scholar 

  • Shosaku A, Kayama Y, Sumitomo I, Sugitani M, Iwama K (1989) Analysis of recurrent inhibitory circuit in rat thalamus: Neurophysiology of the thalamic reticular nucleus. Prog Neurobiol 32:77–102.

    Article  CAS  PubMed  Google Scholar 

  • Siminoff R, Schwassmann HO, Kruger L (1966) An electrophysiological study of the visual projection to the superior colliculus of the rat. JCompNeurol 127:435–444.

    CAS  Google Scholar 

  • Simpson EL, Gaffan EA (1999) Scene and object vision in rats. Q J Exp Psychol B 52:1–29.

    Article  CAS  PubMed  Google Scholar 

  • Spear PD, Baumann TP (1975) Receptive field characteristics of single neurons in lateral suprasylvian visual area of the cat. JNeurophysiol 38:1403–1420.

    CAS  Google Scholar 

  • Steriade M, Llinas RR (1988) The functional states of the thalamus and the associated neuronal interplay. PhysiolRev 68:649–742.

    CAS  Google Scholar 

  • Steriade M, Domich L, Oakson G (1986) Reticularis thalami neurons revisited: activity changes during shifts in states of vigilance. JNeurosci 6:68–81.

    CAS  Google Scholar 

  • Steriade M, McCormick DA, Sejnowski TJ (1993) Thalamocortical oscillations in the sleeping and aroused brain. Science 262:679–688.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Tiitinen H, May P, Reinikainen K, Naatanen R (1994) Attentive novelty detection in humans is governed by pre-attentive sensory memory. Nature 372:90–92.

    Article  CAS  ADS  PubMed  Google Scholar 

  • Tsumoto T, Creutzfelt OD, Legendy CR (1978) Functional organization of the corticofugal system from the visual cortex to the lateral geniculate nucleus in the cat (with an appendix on geniculo-cortical mono-synaptic connections). Expl Brain Res 32:345–364.

    CAS  Google Scholar 

  • Vanduffel W, Tootell RBH, Orban GA (2000) Attention-dependent suppression of metabolic activity in the early stages of the macaque visual system. Cereb Cortex 10:109–126.

    Article  CAS  PubMed  Google Scholar 

  • Vankov A, Herve-Minvielle A, Sara. S.J. (1995) Response to novelty and its rapid habituation in locus coeruleus neurons of the freely exploring rat. Eur J Neurosci 7:1180–1187.

    Article  CAS  PubMed  Google Scholar 

  • Vidyasagar TR (1998) Gating of neuronal responses in macaque primary visual cortex by attentional spotlight. Neuroreport 9:1947–1952.

    Article  CAS  PubMed  Google Scholar 

  • Von Krosigk M, Monckton JE, Reiner PB, McCormick DA (1999) Dynamic properties of corticothalamic excitatory postsynaptic potentials and thalamic reticular inhibitory postsynaptic potentials in thalamocortical neurons of the guinea-pig dorsal lateral geniculate nucleus. Neuroscience 91:7–20.

    Article  Google Scholar 

  • Walker MF, Fitzgibbon EJ, Goldberg ME (1995) Neurons in the monkey superior colliculus predict the visual result of impending saccadic eye movements. J Neurophysiol 73:1988–2003.

    CAS  PubMed  Google Scholar 

  • Warren RA, Jones EG (1994) Glutamate activation of cat thalamic reticular nucleus: effects on response properties of ventroposterior neurons. Exp Brain Res 100:215–226.

    Article  CAS  PubMed  Google Scholar 

  • Watanabe T, Sasaki Y, Miyauchi S, Putz B, Norio F, Nielsen M, Takino R, Miyakawa S (1998) Attention-regulated activity in human primary visual cortex. J Neurophysiol 79:2218–2221.

    CAS  PubMed  Google Scholar 

  • Wiesel TN, Hubel DH (1963) Effects of visual deprivation on morphology and physiology of cells in the cat’s lateral geniculate body. JNeurophysiol 26:978–993.

    CAS  Google Scholar 

  • Wiesel TN, Hubel DH (1965) Comparison of the effects of unilateral and bilateral eye closure on cortical unit responses in kittens. J Neurophysiol 28:1029–1040.

    CAS  PubMed  Google Scholar 

  • Yingling CD, Skinner JE (1977) Gating of thalamic input to cerebral cortex by nucleus reticularis thalami. In: Attention, Voluntary Contraction and Event-Related Cerebral Potentials. Prog. clin. Neurophysiol. Vol 1 (Desmedt JE, ed), pp 70–96. Basel: Karger.

    Google Scholar 

  • Zeki SM (1974) Functional organization of a visual area in the posterior bank of the superior temporal sulcus of the rhesus monkey. JPhysiolLondon 236:549–573.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Montero, V. (2006). Attentional Activation of Cortico-Reticulo-Thalamic Pathways Revealed by Fos Imaging. In: Pinaud, R., Tremere, L.A., De Weerd, P. (eds) Plasticity in the Visual System. Springer, Boston, MA. https://doi.org/10.1007/0-387-28190-8_6

Download citation

Publish with us

Policies and ethics