Skip to main content

Trace Amines Cause More than One Effect on Dopaminergic Neurons

  • Conference paper
  • 859 Accesses

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 56))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Barroso, N., and Rodriguez, M., 1996, Action of beta-phenylethylamine and related amines on nigrostriatal dopamine neurotransmission. Eur. J. Pharmacol. 297:195–203.

    Article  PubMed  CAS  Google Scholar 

  • Berry, M.D., 2004, Mammalian central nervous system trace amines. Pharmacologic amphetamines, physiologic neuromodulators. J. Neurochem. 90:257–271.

    Article  PubMed  CAS  Google Scholar 

  • Bonci, A., and Williams, J.T., 1996, A common mechanism mediates long-term changes in synaptic transmission after chronic cocaine and morphine. Neuron. 16:631–639.

    Article  PubMed  CAS  Google Scholar 

  • Borowsky, B., Adham, N., Jones, K.A., Raddatz, R., Artymyshyn, R., Ogozalek, K.L., Durkin, M.M., Lakhlani, P.P., Bonini, J.A., Pathirana, S., Boyle, N., Pu, X., Kouranova, E., Lichtblau, H., Ochoa, F. Y., Branchek, T.A., and Gerald, C., 2001, Trace amines: identification of a family of mammalian G proteincoupled receptors. Proc. Natl. Acad. Sci. U S A 98:8966–8971.

    Article  PubMed  CAS  Google Scholar 

  • Boulton, A.A., 1976, Identification, distribution, metabolism, and function of meta and para tyramine, phenylethylamine and tryptamine in brain. Adv. Biochem. Psychopharmacol. 15:57–67.

    PubMed  CAS  Google Scholar 

  • Boulton, A.A., 1982, Some aspects of basic psychopharmacology: the trace amines. Prog. Neuropsychopharmacol Biol. Psychiatry 6:563–570.

    Article  PubMed  CAS  Google Scholar 

  • Branchek, T.A., and Blackburn, T.P., 2003, Trace amine receptors as targets for novel therapeutics: legend, myth and fact. Curr. Opin. Pharmacol. 3:90–97.

    Article  PubMed  CAS  Google Scholar 

  • Bunzow, J.R., Sonders, M.S., Arttamangkul, S., Harrison, L.M., Zhang, G., Quigley, D.I., Darland, T., Suchland, K.L., Pasumamula, S., Kennedy, J.L., Olson, S.B., Magenis, R.E., Amara, S. G., and Grandy, D.K., 2001, Amphetamine, 3,4-methylenedioxymethamphetamine, lysergic acid diethylamide, and metabolites of the catecholamine neurotransmitters are agonists of a rat trace amine receptor. Mol. Pharmacol. 60:1181–1188.

    PubMed  CAS  Google Scholar 

  • Cameron, D.L., and Williams, J.T., 1993, Dopamine D1 receptors facilitate transmitter release. Nature 366:344–347.

    Article  PubMed  CAS  Google Scholar 

  • Couve, A., Thomas, P., Calver, A.R., Hirst, W.D., Pangalos, M.N., Walsh, F.S., Smart, T.G., and Moss, S.J., 2002, Cyclic AMP-dependent protein kinase phosphorylation facilitates GABA(B) receptor-effector coupling. Nat. Neurosci. 5:415–424.

    PubMed  CAS  Google Scholar 

  • Durden, D.A., and Philips, S.R., 1980, Kinetic measurements of the turnover rates of phenylethylamine and tryptamine in vivo in the rat brain. J. Neurochem. 34:1725–1732.

    PubMed  CAS  Google Scholar 

  • Federici, M., Geracitano, R., Tozzi, A., Longone, P., Di Angelantonio, S., Bengtson, C.P., Bernardi, G., and Mercuri, N.B., 2005, Trace amines depress GABAB response in dopaminergic neurons by inhibiting G-βγ-gated inwardly rectifying potassium channels. Mol. Pharmacol. 67:1283–1290.

    Article  PubMed  CAS  Google Scholar 

  • Geracitano, R., Federici, M., Prisco, S., Bernardi, G., and Mercuri, N.B., 2004, Inhibitory effects of trace amines on rat midbrain dopaminergic neurons. Neuropharmacology 46:807–814.

    Article  PubMed  CAS  Google Scholar 

  • Hoang, Q.V., Bajic, D., Yanagisawa, M., Nakajima, S., and Nakajima, Y., 2003, Effects of orexin, hypocretin on GIRK channels. J. Neurophysiol. 90:693–702.

    Article  PubMed  CAS  Google Scholar 

  • Huang, C.L., Jan, Y.N., and Jan, L.Y., 1997, Binding of the G protein betagamma subunit to multiple regions of G protein-gated inward-rectifying K+ channels. FEBS Lett. 405:291–298.

    Article  PubMed  CAS  Google Scholar 

  • Janssen, P.A., Leysen, J.E., Megens, A.A., and Awouters, F.H., 1999, Does phenylethylamine act as an endogenous amphetamine in some patients? Int. J. Neuropsychopharmcol 2:229–240.

    Article  PubMed  CAS  Google Scholar 

  • Johnson, S.W., and North, R.A., 1992, Two types of neurone in the rat ventral tegmental area and their synaptic inputs. J. Physiol. 450:455–468.

    PubMed  CAS  Google Scholar 

  • Juorio, A.V., 1976, Presence and metabolism of beta-phenylethylamine, p-tyramine, m-tyramine and tryptamine in the brain of the domestic fowl. Brain Res. 111:442–445.

    Article  PubMed  CAS  Google Scholar 

  • Juorio, A.V., Paterson, I.A., Zhu, M.Y., and Matte, G., 1991, Electrical stimulation of the substantia nigra and changes of 2-phenylethylamine synthesis in the rat striatum. J. Neurochem. 56:213–220.

    PubMed  CAS  Google Scholar 

  • Kim, K.A., and von Zastrow, M., 2001, Old drugs learn new tricks: insights from mammalian trace amine receptors. Mol. Pharmacol. 60:1165–1167.

    PubMed  CAS  Google Scholar 

  • Kosa, E., Marcilhac-Flouriot, A., Fache, M.P., and Siaud, P., 2000, Effects of beta-phenylethylamine on the hypothalamo-pituitary-adrenal axis in the male rat. Pharmacol. Biochem. Behav. 67:527–535.

    Article  PubMed  CAS  Google Scholar 

  • Kunkel, M.T., and Peralta, E.G., 1995, Identification of domains conferring G protein regulation on inward rectifier potassium channels. Cell 83:443–449.

    Article  PubMed  CAS  Google Scholar 

  • Lacey, M.G., Mercuri, N.B., and North, R.A., 1988, On the potassium conductance increase activated by GABAB and dopamine D2 receptors in rat substantia nigra neurones. J. Physiol. 401:437–453.

    PubMed  CAS  Google Scholar 

  • Lewohl, J.M., Wilson, W.R., Mayfield, R.D., Brozowski, S.J., Morrisett, R.A., and Harris, R.A., 1999, Gproteincoupled inwardly rectifying potassium channels are targets of alcohol action. Nat. Neurosci. 2:1084–1090.

    Article  PubMed  CAS  Google Scholar 

  • Mercuri, N.B., Bonci, A., Calabresi, P., Stefani, A., and Bernardi, G., 1995, Properties of the hyperpolarization-activated cation current Ih in rat midbrain dopaminergic neurons. Eur. J. Neurosci. 7:462–469.

    Article  PubMed  CAS  Google Scholar 

  • Meyer, T., Wellner-Kienitz, M.C., Biewald, A., Bender, K., Eickel, A., and Pott, L., 2001, Depletion of phosphatidylinositol 4,5-bisphosphate by activation of phospholipase C-coupled receptors causes slow inhibition but not desensitization of G protein-gated inward rectifier K+ current in atrial myocytes. J. Biol. Chem. 276:5650–5658.

    Article  PubMed  CAS  Google Scholar 

  • Mundorf, M.L., Hochstetler, S.E., and Wightman, R.M., 1999, Amine weak bases disrupt vesicular storage and promote exocytosis in chromaffin cells. J. Neurochem. 73:2397–2405.

    Article  PubMed  CAS  Google Scholar 

  • Nguyen, T.V., and Juorio, A.V., 1989, Binding sites for brain trace amines. Cell Mol. Neurobiol. 9:297–311.

    Article  PubMed  CAS  Google Scholar 

  • Parker, E.M., and Cubeddu, L.X., 1988, Comparative effects of amphetamine, phenylethylamine and related drugs on dopamine efflux, dopamine uptake and mazindol binding. J. Pharmacol. Exp. Ther. 245:199–210.

    PubMed  CAS  Google Scholar 

  • Paterson, I.A., Juorio, A.V., and Boulton, A.A., 1990, 2-Phenylethylamine: a modulator of catecholamine transmission in the mammalian central nervous system? J. Neurochem. 55:1827–1837.

    PubMed  CAS  Google Scholar 

  • Petit-Jacques, J., Sui, J.L., and Logothetis, D.E., 1999, Synergistic activation of G protein-gated inwardly rectifying potassium channels by the betagamma subunits of G proteins and Na(+) and Mg(2+) ions. J. Gen. Physiol. 114:673–684.

    Article  PubMed  CAS  Google Scholar 

  • Premont, R.T., Gainetdinov, R.R., and Caron, M.G., 2001, Following the trace of elusive amines. Proc. Natl. Acad. Sci. U S A 98:9474–9475.

    Article  PubMed  CAS  Google Scholar 

  • Scarponi, M., Bernardi, G., and Mercuri, N.B., 1999, Electrophysiological evidence for a reciprocal interaction between amphetamine and cocaine-related drugs on rat midbrain dopaminergic neurons. Eur. J. Neurosci. 11:593–598.

    Article  PubMed  CAS  Google Scholar 

  • Schonfeld, C.L., and Trendelenburg, U., 1989, The release of 3H-noradrenaline by p-and m-tyramines and — octopamines, and the effect of deuterium substitution in alpha-position. Naunyn. Schmiedebergs Arch. Pharmacol. 339:433–440.

    Article  PubMed  CAS  Google Scholar 

  • Skerritt, J.H., Guihot, S.L., McDonald, S.E., and Culvenor, R.A., 2000, Development of immunoassays for tyramine and tryptamine toxins of Phalaris aquatica L. J. Agric. Food Chem. 48:27–32.

    Article  PubMed  CAS  Google Scholar 

  • Sui, J.L., Petit-Jacques, J., and Logothetis, D.E., 1998, Activation of the atrial KACh channel by the betagamma subunits of G proteins or intracellular Na+ ions depends on the presence of phosphatidylinositol phosphates. Proc. Natl. Acad. Sci. U S A 95:1307–1312.

    Article  PubMed  CAS  Google Scholar 

  • Tozzi, A., Guatteo, E., Caputi, L., Bernardi, G., and Mercuri, N.B., 2001, Group I mGluRs coupled to G proteins are regulated by tyrosine kinase in dopamine neurons of the rat midbrain. J. Neurophysiol. 85:2490–2497.

    PubMed  CAS  Google Scholar 

  • Uchida, S., Akaike, N., and Nabekura, J., 2000, Dopamine activates inward rectifier K+ channel in acutely dissociated rat substantia nigra neurones. Neuropharmacology 39:191–201.

    Article  PubMed  CAS  Google Scholar 

  • Ungar, F., Mosnaim, A.D., Ungar, B., and Wolf, M.E., 1977, Tyramine-binding by synaptosomes from rat brain: effect of centrally active drugs. Biol. Psychiatry 12:661–668.

    PubMed  CAS  Google Scholar 

  • Vaccari, A., 1986, High affinity binding of [3H]-tyramine in the central nervous system. Br J Pharmacol. 89:15–25.

    PubMed  CAS  Google Scholar 

  • Vaccari, A., and Gessa, G., 1989, [3H]tyramine binding: a comparison with neuronal [3H]dopamine uptake and [3H]mazindol binding processes. Neurochem. Res. 14:949–955.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Geracitano, R., Federici, M., Tozzi, A., Longone, P., Bernardi, G., Mercuri, N.B. (2005). Trace Amines Cause More than One Effect on Dopaminergic Neurons. In: Bolam, J.P., Ingham, C.A., Magill, P.J. (eds) The Basal Ganglia VIII. Advances in Behavioral Biology, vol 56. Springer, Boston, MA. https://doi.org/10.1007/0-387-28066-9_15

Download citation

Publish with us

Policies and ethics