Skip to main content

Relaxation by Collisions with Hydrogen Atoms: Polarization of Spectral Lines

International Meeting on Electron Scattering from Atoms, Nuclei, Molecules and Bulk Matter. Magdelene College, Cambridge 16 – 19 December 2001.

  • Chapter
Electron Scattering

Part of the book series: Physics of Atoms and Molecules ((PAMO))

  • 1172 Accesses

Abstract

New technological improvements have made possible in recent times the development of telescopes and post-focus instrumentation for solar research capable of pushing the polarimetric accuracy of spectroscopic observations to unprecedented limits. The operation of these instruments has revealed a wealth of new phenomena, especially in the detection of puzzling signals of linear polarisation in the solar spectrum observed at small angular distances from the limb. Through its interpretation it is indeed possible to diagnose several important aspects of the physics of the higher layers of the solar atmosphere, such as the degree of anisotropy of the radiation field, and, probably the most important item, the presence and quantitative measurement of weak magnetic fields.

However, it is important to remark that weak magnetic fields act, on resonance polarization, with a general depolarization mechanism and, from this point of view, they are quite similar to depolarizing collisions. A dignostic of weak magnetic fields in the higher layers of the solar atmosphere is thus possible, from the analysis of the linear polarization solar spectrum, only if the role of depolarizing collisions is fairly understood.

A detailed treatment of collisional relaxation rates due to collisions with hydrogen atoms is presented; a particularly striking example is the sodium doublet which shows an intriguing profile in the linear polarisation solar spectrum observed very close to the the solar limb (in particular with the solar telescope THEMIS). This profile has been tentatively interpreted as due to the presence of ground level atomic polarisation in the sodium atoms of the solar atmosphere but this hypothesis has

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bommier V. and Kerkeni B., (2002), to be published.

    Google Scholar 

  2. Stenflo J.O. and Keller C.U., Astron. Astrphys., 321 (1997) 927.

    ADS  Google Scholar 

  3. Keller C.U. and Sheeley N.R., Proceedings of the 2nd Solar Polarization Workshop, edited by Nagendra K.N. and Stenflo J.O., Assl Series 243 (Kluwer, Dordrecht) 199, pp. 17–30.

    Google Scholar 

  4. Landi Degl’Innocenti E., 2nd international workshop on solar polarization, Bangalore (India), 12–16 octobre 1998 1999, Kluwer Astrophysics and Space Science Library (ASSL) Series, Vol 243, K.N. Nagendra and J.O. Stenflo (eds.) p.61.

    Google Scholar 

  5. Bommier, V., Molodij, G., “Some thémis-mtr observations of the Second Solar Spectrum (2000 campaign)” 2001, Astron. Astrophys., thémis Special Issue (submitted).

    Google Scholar 

  6. Bommier, V., Molodij, G., “Some thémis-mtr observations of the Second Solar Spectrum” International Colloquium “thémis and the new frontiers of solar atmosphere dynamics”, Rome (Italie), 19–21 mars 2001, Il Nuovo Cimento C, Special Issue.

    Google Scholar 

  7. Stenflo J.O., Gandorfer A. and Keller C.U., Astron. Astrophys., 355 (2000) 781.

    ADS  Google Scholar 

  8. Stenflo J.O., Keller C.U. and Gandorfer A., Astron. Astrophys., 355 (2000) 789.

    ADS  Google Scholar 

  9. Landi Degl’Innocenti E., Nature, 392, (1998) 256.

    Article  ADS  Google Scholar 

  10. Werner H.-J., Knowles P.J., 1988, J. Chem. Phys. 89, 5803. Werner H.-J., Knowles P.J., 1985, J. Chem. Phys. 82, 5053.

    Article  ADS  Google Scholar 

  11. B. O. Roos and A. J. Sadlej; Theor. Chim. Acta., 79 (1991) 123–140.

    Article  Google Scholar 

  12. A. J. Sadlej and M. Urban, J. Mol. Struct. (theochem), 234 (1991) 147–171.

    Google Scholar 

  13. Mies F.H., 1973, Phys. Rev. A7, 942.

    ADS  Google Scholar 

  14. J.M. Launay and E. Roueff., J. Phys. B: Atom. Molec., Phys., Vol. 10, No. 5, (1977). J.M. Launay J. Phys B: Atom. Molec. Phys. 10, 3665 (1977).

    Google Scholar 

  15. B. Kerkeni et al. Astron. Astrophys. 358, 373–377 (2000). B. Kerkeni, A. Spielfiedel, and N. Feautrier., Astron. Astrophys. 364, 937 (2000).

    ADS  Google Scholar 

  16. Spielfiedel A, Feautrier N, Chambaud G, Lévy B, 1991, J Phys B 24, 4711.

    Article  ADS  Google Scholar 

  17. B. R. Johnson, J. Comput. Phys. 13, 445–449 (1973).

    Article  MATH  ADS  Google Scholar 

  18. G. Nienhuis., J. Phys. B: Atom. Molec. Phys., Vol. 9, No. 2, 1976.

    Google Scholar 

  19. Reid R. HG, J. Phys. B: At Mol. Phys 6 2018, (1973).

    Article  ADS  Google Scholar 

  20. Omont A., Prog. Quantum Electronics, 5, 69 (1977).

    Article  ADS  Google Scholar 

  21. Fano, U Rev. Mod. Phys. 29, 74 (1957).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  22. Kerkeni B., (2002), to be published.

    Google Scholar 

  23. Waddel J., Astrophys. J., 136 (1962) 223.

    Article  ADS  Google Scholar 

  24. Bommier V, thèse de 3me cycle, Université Paris 6, (1977).

    Google Scholar 

  25. Eibe M.T., Mein P., Roudier T., Faurobert M., 2001, Astron. and Astrophys. 371, 1128.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Kerkeni, B. (2005). Relaxation by Collisions with Hydrogen Atoms: Polarization of Spectral Lines. In: Whelan, C.T., Mason, N.J. (eds) Electron Scattering. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/0-387-27567-3_9

Download citation

Publish with us

Policies and ethics