Skip to main content

Electron Collisions with Aggregated Matter

  • Chapter
  • 1186 Accesses

Part of the book series: Physics of Atoms and Molecules ((PAMO))

Abstract

A recent synchrotron radiation experiment in which the absorption of high energy x-rays by soot particles in an ethylene flame has revealed what seems to be a complex interaction mechanism involving collisions between Auger electrons, and secondary electrons with nano-particles in an aggregated structure. The overall electron loss thus generated, produces. local charging of the particles resulting in a Coulomb explosion. The implications for astrophysics and combustion physics will be discussed and a brief commentary on aggregate matter physics and chemistry will be presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   89.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. di Stasio, S. 2001 Carbon 39, 109

    Article  Google Scholar 

  2. Filippov, A.V., Zurita, M. & Rosner, D.E. 2000 J. Colloid. Interface Sci. 229, 261

    Article  Google Scholar 

  3. Bockhorn, H. (ed). Soot Formation in Chemical Physics Springer-Verlag, Berlin.

    Google Scholar 

  4. Reilly, P.T.A., Gieray, R.A., Whitten, W.B. & Ramsey, J.M. 2000 Combust. Flame 122, 90

    Article  Google Scholar 

  5. Dobbins, R.A. & Megaridis, C.M. 1987 Langmuir 3, 254

    Article  Google Scholar 

  6. Watson, W.D. & Salpeter, E.E. 1972 ApJ 174, 321

    Article  ADS  Google Scholar 

  7. Léger, A. Jura, M. & Omont, A. 1985 A&A 144, 147

    ADS  Google Scholar 

  8. Watson, W.D. 1972 ApJ 176, 103

    Article  ADS  Google Scholar 

  9. Mitchell, J.B.A., Rebrion-Rowe, C., LeGarrec, J.L., Taupier, G, Huby, N. & Wulff, M. (Submitted to Astron. Astrophys)

    Google Scholar 

  10. Mitchell, J.B.A., Rebrion-Rowe, C., LeGarrec, J.L., Taupier, G, Huby, N. & Wulff, M. (Submitted to Combust. Flame)

    Google Scholar 

  11. Santoro, R.J., Semerjian, H.G. & Dobbins, R.A. 1983 Combust. Flame 51, 203

    Article  Google Scholar 

  12. Henke, B.L., Lee, P., Tanaka, T.J., Shimabukuro, R.L. & B.K. Fajikawa, B.K. 1982 At. Data Nucl. Data Tables 27, 1

    Article  ADS  Google Scholar 

  13. Fialkov, A.B. 1997 Prog. Ener. Combust. Sci. 23, 399

    Article  Google Scholar 

  14. Dwek, E. & Smith, R.K. 1996 ApJ 459, 686

    Article  ADS  Google Scholar 

  15. Rinzler, A.G. et al., 1995 Science 269, 1550

    Article  ADS  Google Scholar 

  16. Ferrari, A.C. et al., 1999 Europhy. Lett. 46, 245

    Article  MathSciNet  ADS  Google Scholar 

  17. Bonard, J.M., Salvetat, J.P., Stockli, T., Forro, L & Chatelain, A. 1999 Appl. Phys. A 69, 245

    Article  ADS  Google Scholar 

  18. Draine, B.T. & Salpeter, E.E. 1979 ApJ 231, 77

    Article  ADS  Google Scholar 

  19. Chang, C.A., Schiano, A.V.R. & Wolfe, A.M. 1987 ApJ 322, 180

    Article  ADS  Google Scholar 

  20. Ball, R.T. & Howard, J.B. 1971 13th (International) Symposium on Combustion, p. 353, The Combustion Institute, Pittsburgh, p. 353

    Google Scholar 

  21. Schmidt-Ott, A., Schurtenberger, P. & Siegmann, H.C. 1980 Phys. Rev. Lett. 45, 1284

    Article  ADS  Google Scholar 

  22. Burtscher, H., Schmidt-Ott, A. & Siegmann, H.C. 1984 Z. Phys. B 56, 197

    Article  ADS  Google Scholar 

  23. Burtscher, H. & Schmidt-Ott, A. 1985 Surface Sci. 156, 735

    Article  ADS  Google Scholar 

  24. Müller, U., Schmidt-Ott, A. & Burtscher, H. 1988a Z. Phys. B 73, 103

    Article  ADS  Google Scholar 

  25. Müller, U., Burtscher, H. & and Schmidt-Ott, A. 1988b Phys. Rev. B 38, 7814

    Article  ADS  Google Scholar 

  26. Markstein, G.H. 1967 11th Int. Symp. Combust. (The Combustion Institute, Pittsburgh), 219

    Google Scholar 

  27. Mitchell, J.B.A. & Miller, D.J.M. 1989 Combust. Flame 75, 45

    Article  Google Scholar 

  28. Feist, W.M. 1968 Advances Electronics Electron Physics Supplement 4 (eds. L. Marton and A.B. El-Karch), Academic Press, NY

    Google Scholar 

  29. C. Heiles & D. Finkbeiner 2001 ApJ (To be published)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Mitchell, J. (2005). Electron Collisions with Aggregated Matter. In: Whelan, C.T., Mason, N.J. (eds) Electron Scattering. Physics of Atoms and Molecules. Springer, Boston, MA. https://doi.org/10.1007/0-387-27567-3_20

Download citation

Publish with us

Policies and ethics