Skip to main content

Genetic Causes of Hypoparathyroidism

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Hypoparathyroidism is characterized clinically by the presence of hypocalcemia and hyperphosphatemia due to inadequate supply or effectiveness of circulating parathyroid hormone (PTH). It may be present either as an isolated finding or as a component of a more complex developmental, metabolic, or endocrinologic syndrome. While the most common cause of hypoparathyroidism continues to be surgical destruction1, several genetic etiologies have been identified that help define the molecular basis for less common causes. These genetic disorders can result in impaired embryologic development of the parathyroids, disordered synthesis or secretion of PTH, autoimmune destruction of the parathyroid gland, or inappropriate end-organ response to PTH (Table 1).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Marx SJ. Hyperparathyroid and hypoparathyroid disorders. N Engl J Med 2000; 343(25):1863–1875.

    Article  PubMed  CAS  Google Scholar 

  2. Sadler TW. Langman’s Medical Embryology. 5th ed. Baltimore: Williams & Wilkins, 1985.

    Google Scholar 

  3. Kovacs CS, Manley NR, Moseley JM et al. Fetal parathyroids are not required to maintain placental calcium transport. J Clin Invest 2001; 107(8):1007–1015.

    PubMed  CAS  Google Scholar 

  4. Kovacs CS, Lanske B, Hunzelman JL et al. Parathyroid hormone-related peptide (PTHrP) regulates fetal-placental calcium transport through a receptor distinct from the PTH/PTHrP receptor. Proc Natl Acad Sci USA 1996; 93(26):15233–15238.

    Article  PubMed  CAS  Google Scholar 

  5. Kovacs CS, Chafe LL, Fudge NJ et al. Pth regulates fetal blood calcium and skeletal mineralization independently of pthrp. Endocrinology 2001; 142(11):4983–4993.

    Article  PubMed  CAS  Google Scholar 

  6. Scambler PJ. The 22q11 deletion syndromes. Hum Mol Genet 2000; 9(16):2421–2426.

    Article  PubMed  CAS  Google Scholar 

  7. Shprintzen RJ. Velocardiofacial syndrome and DiGeorge sequence. J Med Genet 1994; 31(5):423–424.

    PubMed  CAS  Google Scholar 

  8. Greig F, Paul E, DiMartino-Nardi J et al. Transient congenital hypoparathyroidism: resolution and recurrence in chromosome 22q11 deletion. J Pediatr 1996; 128(4):563–567.

    Article  PubMed  CAS  Google Scholar 

  9. Garcia-Garcia E, Camacho-Alonso J, Gomez-Rodriguez MJ et al. Transient congenital hypoparathyroidism and 22q11 deletion. J Pediatr Endocrinol Metab 2000; 13(6):659–661.

    PubMed  CAS  Google Scholar 

  10. Cuneo BF, Driscoll DA, Gidding SS et al. Evolution of latent hypoparathyroidism in familial 22q11 deletion syndrome. Am J Med Genet 1997; 69(1):50–55.

    Article  PubMed  CAS  Google Scholar 

  11. Feller SM, Posern G, Voss J et al. Physiological signals and oncogenesis mediated through Crk family adapter proteins. J Cell Physiol 1998; 177(4):535–552.

    Article  PubMed  CAS  Google Scholar 

  12. Guris DL, Fantes J, Tara D et al. Mice lacking the homologue of the human 22q11.2 gene CRKL phenocopy neurocristopathies of DiGeorge syndrome. Nat Genet 2001; 27(3):293–298.

    Article  PubMed  CAS  Google Scholar 

  13. Lindsay EA, Vitelli F, Su H et al. Tbxl haploinsufficieny in the DiGeorge syndrome region causes aortic arch defects in mice. Nature 2001; 410(6824):97–101.

    Article  PubMed  CAS  Google Scholar 

  14. Jerome LA, Papaioannou VE. DiGeorge syndrome phenotype in mice mutant for the T-box gene, Tbxl. Nat Genet 2001; 27(3):286–291.

    Article  CAS  Google Scholar 

  15. Yagi H, Furutani Y, Hamada H et al. Role of TBX1 in human del22q11.2 syndrome. Lancet 2003; 362:1366–1373.

    Article  PubMed  CAS  Google Scholar 

  16. Baldini A. DiGeorge syndrome: an update. Curr Opin Cardiol 2004; 19:201–204.

    Article  PubMed  Google Scholar 

  17. Lindsay EA, Botta A, Jurecic V et al. Congenital heart disease in mice deficient for the DiGeorge syndrome region. Nature 1999; 401(6751):379–383.

    PubMed  CAS  Google Scholar 

  18. Daw SC, Taylor C, Kraman M et al. A common region of 10p deleted in DiGeorge and velocardiofacial syndromes. Nat Genet 1996; 13(4):458–460.

    Article  PubMed  CAS  Google Scholar 

  19. Lichtner P, Konig R, Hasegawa T et al. An HDR (hypoparathyroidism, deafness, renal dysplasia) syndrome locus maps distal to the DiGeorge syndrome region on 10p 13/14. J Med Genet 2000; 37(1):33–37.

    Article  PubMed  CAS  Google Scholar 

  20. Bilous RW, Murty G, Parkinson DB et al. Brief report: autosomal dominant familial hypoparathyroidism, sensorineural deafness, and renal dysplasia. N Engl J Med 1992; 327(15):1069–1074.

    Article  PubMed  CAS  Google Scholar 

  21. Van Esch H, Groenen P, Nesbit MA et al. GATA3 haplo-insufficiency causes human HDR syndrome. Nature 2000; 406(6794):419–422.

    Article  PubMed  CAS  Google Scholar 

  22. Hershkovitz E, Shalitin S, Levy J et al. The new syndrome of congenital hypoparathyroidism associated with dysmorphism, growth retardation, and developmental delay—a report of six patients. Isr J Med Sci 1995; 31(5):293–297

    PubMed  CAS  Google Scholar 

  23. Sanjad SA, Sakati NA, Abu-Osba YK et al. A new syndrome of congenital hypoparathyroidism, severe growth failure, and dysmorphic features. Arch Dis Child 1991; 66(2):193–196.

    PubMed  CAS  Google Scholar 

  24. Parvari R, Hershkovitz E, Kanis A et al. Homozygosity and linkage-disequilibrium mapping of the syndrome of congenital hypoparathyroidism, growth and mental retardation, and dysmorphism to a 1-cM interval on chromosome 1q42–43. Am J Hum Genet 1998; 63(1):163–169.

    Article  PubMed  CAS  Google Scholar 

  25. Kelly TE, Blanton S, Saif R et al. Confirmation of the assignment of the Sanjad-Sakati (congenital hypoparathyroidism) syndrome (OMIM 241410) locus to chromosome lq42–43. J Med Genet 2000; 37(1):63–64.

    Article  PubMed  CAS  Google Scholar 

  26. Diaz GA, Gelb BD, Ali F et al. Sanjad-Sakati and autosomal recessive Kenny-Caffey syndromes are allelic: evidence for an ancestral founder mutation and locus refinement. Am J Med Genet 1999; 85(1):48–52.

    Article  PubMed  CAS  Google Scholar 

  27. Parvari R, Hershkovitz E, Grossman N et al. Mutation of TBCE causes hypoparathyroidism-retardation-dysmorphism and autosomal recessive Kenny-Caffey syndrome. Nat Genet 2002; 32:448–452.

    Article  PubMed  CAS  Google Scholar 

  28. Tengan CH, Kiyomoto BH, Rocha MS et al. Mitochondrial encephalomyopathy and hypoparathyroidism associated with a duplication and a deletion of mitochondrial deoxyribonucleic acid. J Clin Endocrinol Metab 1998; 83(1):125–129.

    Article  PubMed  CAS  Google Scholar 

  29. Seneca S, De Meirleir L, De Schepper J et al. Pearson marrow pancreas syndrome: a molecular study and clinical management. Clin Genet 1997; 51(5):338–342.

    Article  PubMed  CAS  Google Scholar 

  30. Tanaka K, Takada Y, Matsunaka T et al. Diabetes mellitus, deafness, muscle weakness and hypocalcemia in a patient with an A3243G mutation of the mitochondrial DNA. Intern Med 2000; 39(3):249–252.

    PubMed  CAS  Google Scholar 

  31. Morten KJ, Cooper JM, Brown GK et al. A new point mutation associated with mitochondrial encephalomyopathy. Hum Mol Genet 1993; 2(12):2081–2087.

    Article  PubMed  CAS  Google Scholar 

  32. Tyni T, Rapola J, Palotie A et al. Hypoparathyroidism in a patient with long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency caused by the G1528C mutation. J Pediatr 1997; 131(5):766–768.

    Article  PubMed  CAS  Google Scholar 

  33. Dionisi-Vici C, Garavaglia B, Burlina AB et al. Hypoparathyroidism in mitochondrial trifunctional protein deficiency. J Pediatr 1996; 129(1):159–162.

    Article  PubMed  CAS  Google Scholar 

  34. Hosoya T, Takizawa K, Nitta K et al. glial cells missing: a binary switch between neuronal and glial determination in Drosophila. Cell 1995; 82(6):1025–1036.

    Article  PubMed  CAS  Google Scholar 

  35. Gunther T, Chen ZF, Kim J et al. Genetic ablation of parathyroid glands reveals another source of parathyroid hormone. Nature 2000; 406(6792):199–203.

    Article  PubMed  CAS  Google Scholar 

  36. Kim J, Jones BW, Zock C et al. Isolation and characterization of mammalian homologs of the Drosophila gene glial cells missing. Proc Natl Acad Sci USA 1998; 95(21):12364–12369.

    Article  PubMed  CAS  Google Scholar 

  37. Kammerer M, Pirola B, Giglio S et al. GCMB, a second human homolog of the fly glide/gcm gene. Cytogenet Cell Genet 1999; 84(1–2):43–47.

    Article  PubMed  CAS  Google Scholar 

  38. Ding C, Buckingham B, Levine MA. Familial isolated hypoparathyroidism caused by a mutation in the gene for the transcription factor GCMB. J Clin Invest 2001; 108(8):1215–1220.

    Article  PubMed  CAS  Google Scholar 

  39. Whyte MP, Kim GS, Kosanovich M. Absence of parathyroid tissue in sex-linked recessive hypoparathyroidism. J Pediatr 1986; 109(5):915.

    PubMed  CAS  Google Scholar 

  40. Peden VH. True idiopathic hypoparathyroidism as a sex-linked recessive trait. Am J Hum Genet 1960; 12:323–337.

    PubMed  CAS  Google Scholar 

  41. Whyte MP, Weldon W. Idiopathic hypoparathyroidism presenting with seizures during infancy: X-linked recessive inheritance in a large Missouri kindred. J Pediatr 1981; 99(4):608–611.

    Article  PubMed  CAS  Google Scholar 

  42. Mumm S, Whyte MP, Thakker RV et al. mtDNA analysis shows common ancestry in two kindreds with X-linked recessive hypoparathyroidism and reveals a heteroplasmic silent mutation. Am J Hum Genet 1997; 60(1):153–159.

    PubMed  CAS  Google Scholar 

  43. Trump D, Dixon PH, Mumm S et al. Localisation of X linked recessive idiopathic hypoparathyroidism to a 1.5 Mb region on Xq26–q27. J Med Genet 1998; 35(11):905–909.

    PubMed  CAS  Google Scholar 

  44. Thakker RV, Davies KE, Whyte MP et al. Mapping the gene causing X-linked recessive idiopathic hypoparathyroidism to Xq26–Xq27 by linkage studies. J Clin Invest 1990; 86(1):40–45.

    PubMed  CAS  Google Scholar 

  45. Bowl MR, Nesbit MA, Harding B et al. X-linked recessive hypoparathyroidism is caused by a molecular deletion-insertion involving chromosomes Xq27 and 2p25. JBMR 2001; 16(Supp. 1):S152.

    Google Scholar 

  46. Habener JF, Rosenblatt M, Potts Jr JT. Parathyroid hormone: biochemical aspects of biosynthesis, secretion, action, and metabolism. Physiol Rev 1984; 64(3):985–1053.

    PubMed  CAS  Google Scholar 

  47. Arnold A, Horst SA, Gardella TJ et al. Mutation of the signal peptide-encoding region of the preproparathyroid hormone gene in familial isolated hypoparathyroidism. J Clin Invest 1990; 86(4):1084–1087.

    PubMed  CAS  Google Scholar 

  48. Karaplis AC, Lim SK, Baba H et al. Inefficient membrane targeting, translocation, and proteolytic processing by signal peptidase of a mutant preproparathyroid hormone protein. J Biol Chem 1995; 270(4):1629–1635.

    Article  PubMed  CAS  Google Scholar 

  49. Parkinson DB, Thakker RV. A donor splice site mutation in the parathyroid hormone gene is associated with autosomal recessive hypoparathyroidism. Nat Genet 1992; 1(2):149–152.

    Article  PubMed  CAS  Google Scholar 

  50. Sunthornthepvarakul T, Churesigaew S, Ngowngarmratana S. A novel mutation of the signal peptide of the preproparathyroid hormone gene associated with autosomal recessive familial isolated hypoparathyroidism. J Clin Endocrinol Metab 1999; 84(10):3792–3796.

    Article  PubMed  CAS  Google Scholar 

  51. Brown EM, MacLeod RJ. Extracellular calcium sensing and extracellular calcium signaling. Physiol Rev 2001; 81(1):239–297.

    PubMed  CAS  Google Scholar 

  52. Mancilla EE, De Luca F, Baron J. Activating mutations of the Ca2+-sensing receptor. Mol Genet Metab 1998; 64(3):198–204.

    Article  PubMed  CAS  Google Scholar 

  53. Pollak MR, Brown EM, Estep HL et al. Autosomal dominant hypocalcaemia caused by a Ca(2+)-sensing receptor gene mutation. Nat Genet 1994; 8(3):303–307.

    Article  PubMed  CAS  Google Scholar 

  54. Baron J, Winer KK, Yanovski JA et al. Mutations in the Ca(2+)-sensing receptor gene cause autosomal dominant and sporadic hypoparathyroidism. Hum Mol Genet 1996; 5(5):601–606.

    Article  PubMed  CAS  Google Scholar 

  55. Pearce SH, Williamson C, Kifor O et al. A familial syndrome of hypocalcemia with hypercalciuria due to mutations in the calcium-sensing receptor. N Engl J Med 1996; 335(15):1115–1122.

    Article  PubMed  CAS  Google Scholar 

  56. Hirai H, Nakajima S, Miyauchi A et al. A novel activating mutation (C129S) in the calcium-sensing receptor gene in a Japanese family with autosomal dominant hypocalcemia. J Hum Genet 2001; 46(1):41–44.

    Article  PubMed  CAS  Google Scholar 

  57. Watanabe T, Bai M, Lane CR et al. Familial hypoparathyroidism: identification of a novel gain of function mutation in transmembrane domain 5 of the calcium-sensing receptor. J Clin Endocrinol Metab 1998; 83(7):2497–2502.

    Article  PubMed  CAS  Google Scholar 

  58. Hendy GN, D’Souza-Li L, Yang B et al. Mutations of the calcium-sensing receptor (CASR) in familial hypocalciuric hypercalcemia, neonatal severe hyperparathyroidism, and autosomal dominant hypocalcemia. Hum Mutat 2000; 16(4):281–296.

    Article  PubMed  CAS  Google Scholar 

  59. De Luca F, Ray K, Mancilla EE et al. Sporadic hypoparathyroidism caused by de Novo gain-of-function mutations of the Ca(2+)-sensing receptor. J Clin Endocrinol Metab 1997; 82(8):2710–2715.

    Article  PubMed  Google Scholar 

  60. Betterle C, Greggio NA, Volpato M. Autoimmune Polyglandular Syndrome Type 1. J Clin Endocrinol Metab 1998; 83(4):1049–1055.

    Article  PubMed  CAS  Google Scholar 

  61. Perheentupa J. Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED). Horm Metab Res 1996; 28(7):353–356.

    PubMed  CAS  Google Scholar 

  62. Pearce SH, Cheetham T, Imrie H et al. A common and recurrent 13-bp deletion in the autoimmune regulator gene in British kindreds with autoimmune polyendocrinopathy type 1. Am J Hum Genet 1998; 63(6):1675–1684.

    Article  PubMed  CAS  Google Scholar 

  63. Aaltonen J, Horelli-Kuitunen N, Fan JB et al. High-resolution physical and transcriptional mapping of the autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy locus on chromosome 21q22.3 by FISH. Genome Res 1997; 7(8):820–829.

    PubMed  CAS  Google Scholar 

  64. Scott HS, Heino M, Peterson P et al. Common mutations in autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy patients of different origins. Mol Endocrinol 1998; 12(8):1112–1119.

    Article  PubMed  CAS  Google Scholar 

  65. Myhre AG, Halonen M, Eskelin P et al. Autoimmune polyendocrine syndrome type 1 (APS I) in Norway. Clin Endocrinol (Oxf) 2001; 54(2):211–217.

    Article  CAS  Google Scholar 

  66. The Finnish-German APECED Consortium. An autoimmune disease, APECED, caused by mutations in a novel gene featuring two PHD-type zinc-finger domains. Nat Genet 1997; 17(4):399–403.

    Article  Google Scholar 

  67. Rinderle C, Christensen HM, Schweiger S et al. AIRE encodes a nuclear protein colocalizing with cytoskeletal filaments: altered sub-cellular distribution of mutants lacking the PHD zinc fingers. Hum Mol Genet 1999; 8(2):277–290.

    Article  PubMed  CAS  Google Scholar 

  68. Albright F, Burnett CH, Smith PH et al. Pseudohypoparathyroidism-an example of “Seabright-Bantam syndrome”. Endocrinology 1942; 3:922–932.

    Google Scholar 

  69. Chase LR, Melson GL, Aurbach GD. Pseudohypoparathyroidism: defective excretion of 3′,5′-AMP in response to parathyroid hormone. J Clin Invest 1969; 48(10):1832–1844.

    PubMed  CAS  Google Scholar 

  70. Levine MA, Ahn TG, Klupt SF et al. Genetic deficiency of the alpha subunit of the guanine nucleotide-binding protein Gs as the molecular basis for Albright hereditary osteodystrophy. Proc Natl Acad Sci USA 1988; 85(2):617–621.

    Article  PubMed  CAS  Google Scholar 

  71. Levine MA, Eil C, Downs Jr RW. et al. Deficient guanine nucleotide regulatory unit activity in cultured fibroblast membranes from patients with pseudohypoparathyroidism type I. a cause of impaired synthesis of 3′,5′-cyclic AMP by intact and broken cells. J Clin Invest 1983; 72(1):316–324.

    PubMed  CAS  Google Scholar 

  72. Farfel Z, Bourne HR, Iiri T. The expanding spectrum of G protein diseases. N Engl J Med 1999; 340(13):1012–1020.

    Article  PubMed  CAS  Google Scholar 

  73. Levine MA, Modi WS, O’Brien SJ. Mapping of the gene encoding the alpha subunit of the stimulatory G protein of adenylyl cyclase (GNAS1) to 20q13.2–q13.3 in human by in situ hybridization. Genomics 1991; 11(2):478–479.

    Article  PubMed  CAS  Google Scholar 

  74. Levine MA, Downs Jr RW. Moses AM et al. Resistance to multiple hormones in patients with pseudohypoparathyroidism. Association with deficient activity of guanine nucleotide regulatory protein. Am J Med 1983; 74(4):545–556.

    Article  PubMed  CAS  Google Scholar 

  75. Albright F, Forbes AP, Henneman PH. Pseudopseudohypoparathyroidism. Trans Assoc Am Physicians 1952; 65:337.

    PubMed  CAS  Google Scholar 

  76. Davies SJ, Hughes HE. Imprinting in Albright’s hereditary osteodystrophy. J Med Genet 1993; 30(2):101–103.

    Article  PubMed  CAS  Google Scholar 

  77. Weinstein LS, Yu S. The Role of Genomic Imprinting of Galpha in the Pathogenesis of Albright Hereditary Osteodystrophy. Trends Endocrinol Metab 1999; 10(3):81–85.

    Article  PubMed  CAS  Google Scholar 

  78. Yu S, Yu D, Lee E et al. Variable and tissue-specific hormone resistance in heterotrimeric Gs protein alpha-subunit (Gsalpha) knockout mice is due to tissue-specific imprinting of the gsalpha gene. Proc Natl Acad Sci USA 1998; 95(15):8715–8720.

    Article  PubMed  CAS  Google Scholar 

  79. Juppner H, Schipani E, Bastepe M et al. The gene responsible for pseudohypoparathyroidism type Ib is paternally imprinted and maps in four unrelated kindreds to chromosome 20q13.3. Proc Natl Acad Sci USA 1998; 95(20):11798–11803.

    Article  PubMed  CAS  Google Scholar 

  80. Liu J, Litman D, Rosenberg MJ et al. A GNAS1 imprinting defect in pseudohypoparathyroidism type IB. J Clin Invest 2000; 106(9):1167–1174.

    Article  PubMed  CAS  Google Scholar 

  81. Jan de Beur SM, Deng Z, Cho J et al. Loss of imprinting on the maternal GNAS1 allele in pseudohypoparathyroidism 1b. The 83rd Annual Meeting of the Endocrine Society 2001, 107 (abstract).

    Google Scholar 

  82. Bastepe M, Pincus JE, Sugimoto T et al. Positional dissociation between the genetic mutation responsible for pseudohypoparathyroidism type Ib and the associated methylation defect at exon A/B: evidence for a long-range regulatory element within the imprinted GNAS1 locus. Hum Mol Genet 2001; 10(12):1231–1241.

    Article  PubMed  CAS  Google Scholar 

  83. Bastepe M, Lane AH, Juppner H. Paternal uniparental isodisomy of chromosome 20q—and the resulting changes in GNAS1 methylation—as a plausible cause of pseudohypoparathyroidism. Am J Hum Genet 2001; 68(5):1283–1289.

    Article  PubMed  CAS  Google Scholar 

  84. Barrett D, Breslau NA, Wax MB et al. New form of pseudohypoparathyroidism with abnormal catalytic adenylate cyclase. Am J Physiol 1989; 257(2 Pt 1):E277–E283.

    PubMed  CAS  Google Scholar 

  85. Drezner M, Neelon FA, Lebovitz HE. Pseudohypoparathyroidism type II: a possible defect in the reception of the cyclic AMP signal. N Engl J Med 1973; 289(20):1056–1060.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Gafni, R.I., Levine, M.A. (2005). Genetic Causes of Hypoparathyroidism. In: Molecular Biology of the Parathyroid. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27530-4_12

Download citation

Publish with us

Policies and ethics