Skip to main content

Biochemical Studies of Voltage-Gated Ca2+ Channels

  • Chapter

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

Abstract

Voltage-gated Ca2+ channels mediate Ca2+ entry into cells in response to membrane depolarization. Electrophysiological studies reveal different Ca2+ currents designated L-, N-, P-, Q-, R-, and T-type. The high-voltage-activated Ca2+ channels that have been characterized biochemically are complexes of a pore-forming α1 subunit of about 190 to 250 kDa, a transmembrane, disulfide-linked complex of α2 and δ subunits, an intracellular β subunit, and in some cases a transmembrane γ subunit. The α1 subunits form the transmembrane pore. The α2 and δ subunits are glycoproteins encoded by the same gene and produced posttranslational proteolytic processing. The γ subunits are transmembrane glycoproteins, whereas the β subunits are hydrophilic subunits located on the cytosolic face of the channel. The Cav1 family of α1 subunits conduct L-type Ca2+ currents, which initiate muscle contraction, endocrine secretion, and gene transcription. The Cav2 family of α1 subunits conduct N-type, P/Q-type, and R-type Ca2+ currents, which initiate rapid synaptic transmission. Both of these families of Ca2+ channels are regulated by protein phosphorylation and interact with intracellular signal transduction proteins that mediate Ca2+ -dependent regulatory events and in turn regulate the channels.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Reutcr H. The dependence of slow inward current in Purkinje fibres on the extracellular calcium-concentration. J Physiol (Lond) 1967; 192:479–492.

    Google Scholar 

  2. Catterall WA. The molecular basis of neuronal excitability. Science 1984; 223:653–661.

    Article  PubMed  CAS  Google Scholar 

  3. Aimers W, Fink R, Palade PT. Calcium depletion in frog muscle tubules: the decline of calcium current under maintained depolarization. J Physiol (Lond) 1981; 312:177–217.

    Google Scholar 

  4. Rosenberg RL, Hess P, Reeves JP et al. Calcium channels in planar lipid bilayers: Insights into mechanisms of ion permeation and gating. Science 1986; 231:1564–1566.

    Article  PubMed  CAS  Google Scholar 

  5. Sanchez JA, Stefani E. Inward calcium current in twitch muscle fibers of the frog. J Physiol 1978; 283:197–209.

    PubMed  CAS  Google Scholar 

  6. Adams BA, Beam KG. Muscular dysgenesis in mice: A model system for studying excitation-contraction coupling. FASEB J 1990; 4:2809–2816.

    PubMed  CAS  Google Scholar 

  7. Catterall WA. Excitation-contraction coupling in vertebrate skeletal muscle: A tale of two calcium channels. Cell 1991; 64:871–874.

    Article  PubMed  CAS  Google Scholar 

  8. Rios E, Brum G. Involvement of dihydropyridine receptors in excitation-contraction coupling in skeletal muscle. Nature (London) 1987; 325:717–720.

    Article  PubMed  CAS  Google Scholar 

  9. Borsotto M, Barhanin J, Fosset M et al. The 1,4-dihydropyridine receptor associated with the skeletal muscle voltage-dependent Ca++. J Biol Chem 1985; 260:14255–14263.

    PubMed  CAS  Google Scholar 

  10. Curtis BM, Catterall WA. Purification of the calcium antagonist receptor of the voltage-sensitive calcium channel from skeletal muscle transverse tubules. Biochem 1984; 23:2113–2118.

    Article  CAS  Google Scholar 

  11. Hosey MM, Barhanin J, Schmid A et al. Photoaffinity labelling and phosphorylation of a 165 kilodalton peptide associated with dihydropyridine and phenyialkylamine-sensitive calcium channels. Biochem Biophys Res Commun 1987; 147:1137–1145.

    Article  PubMed  CAS  Google Scholar 

  12. Leung AT, Imagawa T, Campbell KP. Structural characterization of the 1,4-dihydropyridine receptor of the voltage-dependent Ca2+ channel from rabbit skeletal muscle. Evidence for two distinct high molecular weight subunits. J Biol Chem 1987; 262:7943–7946.

    PubMed  CAS  Google Scholar 

  13. Sieber M, Nastainczyk W, Zubor V et al. The 165-kDa peptide of the purified skeletal muscle dihydropyridine receptor contains the known regulatory sites of the calcium channel. Eur J Biochem 1987; 167:117–122.

    Article  PubMed  CAS  Google Scholar 

  14. Takahashi M, Seagar MJ, Jones JF et al. Subunit structure of dihydropyridine-sensitive calcium channels from skeletal muscle. Proc Natl Acad Sci USA 1987; 84:5478–5482.

    Article  PubMed  CAS  Google Scholar 

  15. Vaghy PL, Striessnig J, Miwa K et al. Identification of a novel 1,4-dihydropyridine-and phenylalkylamine-binding polypeptide in calcium channel preparations. J Biol Chem 1987; 262:14337–14342.

    PubMed  CAS  Google Scholar 

  16. Curtis BM, Catterall WA. Reconstitution of the voltage-sensitive calcium channel purified from skeletal muscle transverse tubules. Biochemistry 1986; 25:3077–3083.

    Article  PubMed  CAS  Google Scholar 

  17. Flockerzi V, Oeken H-J, Hofmann F et al. Purified dihydropyridine-binding site from skeletal muscle t-tubules is a functional calcium channel. Nature 1986; 323:66–68.

    Article  PubMed  CAS  Google Scholar 

  18. Morton ME, Froehner SC. Monoclonal antibody identifies a 200-kDa subunit of the dihydropyridine-sensitive calcium channel. J Biol Chem 1987; 262:11904–11907.

    PubMed  CAS  Google Scholar 

  19. Ahlijanian MK, Westenbroek RE, Catterall WA. Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina. Neuron 1990; 4:819–832.

    Article  PubMed  CAS  Google Scholar 

  20. Leung AT, Imagawa T, Block B et al. Biochemical and ultrastructural characterization of the 1,4-dihydropyridine receptor from rabbit skeletal muscle Evidence for a 52,000 Da subunit. J Biol Chem 1988; 263:994–1001.

    PubMed  CAS  Google Scholar 

  21. Sharp AH, Campbell KP. Characterization of the 1,4-dihydropyridine receptor using subunit-specific polydonal antibodies. Evidence for a 32,000-Da subunit. J Biol Chem 1989; 264:2816–2825.

    PubMed  CAS  Google Scholar 

  22. Tanabe T, Takeshima H, Mikami A et al. Primary structure of the receptor for calcium channel blockers from skeletal muscle. Nature 1987; 328:313–318.

    Article  PubMed  CAS  Google Scholar 

  23. De Jongh KS, Merrick DK, Catterall WA. Subunits of purified calcium channels: a 212-kDa form of α1 and partial amino acid sequence of a phosphorylation site of an independent β subunit. Proc Natl Acad Sci USA 1989; 86:8585–8589.

    Article  PubMed  Google Scholar 

  24. De Jongh KS, Warner C, Colvin AA et al. Characterization of the two size forms of the α1 sub-unit of skeletal muscle L-type calcium channels. Proc Natl Acad Sci USA 1991; 88:10778–10782.

    Article  PubMed  Google Scholar 

  25. Lai Y, Seagar MJ, Takahashi M et al. Cyclic AMP-dependent phosphorylation of two size forms of α1 subunits of L-type calcium channels in rat skeletal muscle cells. J Biol Chem 1990; 265:20839–20848.

    PubMed  CAS  Google Scholar 

  26. De Jongh KS, Colvin AA, Wang KKW et al. Differential proteolysis of the full-length form of the L-type calcium channel α1 subunit by calpain. J Neurochem 1994; 63:1558–1564.

    Article  PubMed  Google Scholar 

  27. Burgess AJ, Norman RI. The large glycoprotein subunit of the skeletal muscle voltage-sensitive calcium channel. Eur J Biochem 1988; 178:527–533.

    Article  PubMed  CAS  Google Scholar 

  28. Vandaele S, Fosset M, Galizzi J-P et al. Monoclonal antibodies that coimmunoprecipitate the 1,4-dihydropyridine and phenylalkylamine receptors and reveal the Ca2+ channel structure. Biochemistry 1987; 26:5–9.

    Article  PubMed  CAS  Google Scholar 

  29. Ellis SB, Williams ME, Ways NR et al. Sequence and expression of mRNAs encoding the alpha 1 and alpha 2 subunits of a DHP-sensitive calcium channel. Science 1988; 241:1661–1664.

    Article  PubMed  CAS  Google Scholar 

  30. Ruth P, Röhrkasten A, Biel M et al. Primary structure of the beta subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1989; 245:1115–1118.

    Article  PubMed  CAS  Google Scholar 

  31. Bosse E, Regulla S, Biel M et al. The cDNA and deduced amino acid sequence of the gamma subunit of the L-type calcium channel from rabbit skeletal muscle. FEBS Lett 1990; 267:153–156.

    Article  PubMed  CAS  Google Scholar 

  32. Jay SD, Ellis SB, McCue AF et al. Primary structure of the gamma subunit of the DHP-sensitive calcium channel from skeletal muscle. Science 1990; 248:490–492.

    Article  PubMed  CAS  Google Scholar 

  33. De Jongh KS, Warner C, Catterall WA. Subunits of purified calcium channels. α2 and δ are encoded by the same gene. J Biol Chem 1990; 265:14738–14741.

    PubMed  Google Scholar 

  34. Jay SD, Sharp AH, Kahl SD et al. Structural characterization of the dihydropyridine-sensitive calcium channel α2-subunit and the associated δ peptides. J Biol Chem 1991; 266:3287–3293.

    PubMed  CAS  Google Scholar 

  35. Gurnett CA, De Waard M, Campbell KP. Dual function of the voltage-dependent Ca2+ channel α2δ subunit in current stimulation and subunit interaction. Neuron 1996; 16:431–440.

    Article  PubMed  CAS  Google Scholar 

  36. Arreola J, Calvo J, Garcia MC et al. Modulation of calcium channels of twitch skeletal muscle fibres of the frog by adrenaline and cyclic adenosine monophosphate. J Physiol (Lond) 1987; 393:307–330.

    PubMed  CAS  Google Scholar 

  37. Schmid A, Renaud J, Lazdunski M. Short term and long term effects of beta-adrenergic effectors and cyclic AMP on nitrendipine-sensitive voltage-dependent Ca2+ channels of skeletal muscle. J Biol Chem 1985; 260:13041–13046.

    PubMed  CAS  Google Scholar 

  38. Fleig A, Penner R. Silent calcium channels generate excessive tail currents and facilitation of calcium currents in rat skeletal myoballs. J Physiol (Lond) 1996; 494:141–153.

    PubMed  CAS  Google Scholar 

  39. Sculptoreanu A, Scheuer T, Catterall WA. Voltage-dependent potentiation of L-type Ca2+ channels due to phosphorylation by cAMP-dependent protein kinase. Nature 1993a; 364:240–243.

    Article  PubMed  CAS  Google Scholar 

  40. Curtis BM, Catterall WA. Phosphorylation of the calcium antagonist receptor of the voltage-sensitive calcium channel by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1985; 82:2528–2532.

    Article  PubMed  CAS  Google Scholar 

  41. Haase H, Podzuweit T, Lutsch G et al. Signaling from beta-adrenoceptor to L-type calcium channel: identification of a novel cardiac protein kinase A target possessing similarities to AHNAK. FASEB J 1999; 13:2161–2172.

    PubMed  CAS  Google Scholar 

  42. Jahn H, Nastainczyk W, Röhrkasten A et al. Site-specific phosphorylation of the purified receptor for calcium-channel blockers by cAMP-and cGMP-dependent protein kinases, protein kinase C, calmodulin-dependent protein kinase II and casein kinase II. Eur J Biochem 1988; 178:535–542.

    Article  PubMed  CAS  Google Scholar 

  43. Nastainczyk W, Röhrkasten A, Sieber M et al. Phosphorylation of the purified receptor for calcium channel blockers by cAMP kinase and protein kinase C. Eur J Biochem 1987; 169:137–142.

    Article  PubMed  CAS  Google Scholar 

  44. O’Callahari CM, Hosey MM. Multiple phosphorylation sites in the 165-kilodalton peptide associated with dihydropyridine-sensitive calcium channels. Biochemistry 1988; 27:6071–6077.

    Article  Google Scholar 

  45. Hymel L, Striessnig J, Glossmann H et al. Purified skeletal muscle 1,4-dihydropyridine receptor forms phosphorylation-dependent oligomeric calcium channels in planar bilayers. Proc Natl Acad Sci USA 1988; 85:4290–4294.

    Article  PubMed  CAS  Google Scholar 

  46. Mundiña-Weilenmann C, Chang CF, Gutierrez LM et al. Demonstration of the phosphorylation of dihydropyridine-sensitive calcium channels in chick skeletal muscle and the resultant activation of the channels after reconstitution. J Biol Chem 1991; 266:4067–4073.

    PubMed  Google Scholar 

  47. Nunoki K, Florio V, Catterall WA. Activation of purified calcium channels by stoichiometric protein phosphorylation. Proc Natl Acad Sci USA 1989; 86:6816–6820.

    Article  PubMed  CAS  Google Scholar 

  48. Röhrkasten A, Meyer HE, Nastainczyk W et al. cAMP-dependent protein kinase rapidly phospho-rylates serine-687 of the skeletal muscle receptor for calcium channel blockers. J Biol Chem 1988; 263:15325–15329.

    PubMed  Google Scholar 

  49. Rotman EI, De Jongh KS, Florio V et al. Specific phosphorylation of a COOH-terminal site on the full-length form of the αl subunit of the skeletal muscle calcium channel by cAMP-dependent protein kinase. J Biol Chem 1992; 267:16100–16105.

    PubMed  CAS  Google Scholar 

  50. Rotman EI, Murphy BJ, Catterall WA. Sites of selective cAMP-dependent phosphorylation of the L-type calcium channel (α1 subunit from intact rabbit skeletal muscle myotubes. J Biol Chem 1995; 270:16371–16377.

    Article  PubMed  CAS  Google Scholar 

  51. Striessnig J, Knaus HG, Grabner M et al. Photoaffinity labelling of the phenylalkylamine receptor of the skeletal muscle transverse-tubule calcium channel. FEBS Lett 1987; 212:247–253.

    Article  PubMed  CAS  Google Scholar 

  52. Striessnig J, Scheffauer F, Mitterdorfer J et al. Identification of the benzothiazepine-binding polypeptide of skeletal muscle calcium channels with (+)-cis-azidodiltiazem and anti-ligand antibodies. J Biol Chem 1990b; 265:363–370.

    PubMed  CAS  Google Scholar 

  53. Striessnig J, Murphy BJ, Catterall WA. The dihydropyridine receptor of L-type Ca2+ channels: Identification of binding domains for (+)-[3H]PN200–110 and [3H]azidopine within the α-1 sub-unit. Proc Natl Acad Sci USA 1991; 88:10769–10773.

    Article  PubMed  CAS  Google Scholar 

  54. Catterall WA, Striessnig J. Receptor sites for Ca2+ channel antagonists. Trends Pharmacol Sci 1992; 13:256–262.

    Article  PubMed  CAS  Google Scholar 

  55. Hockerman GH, Peterson BZ, Sharp E et al. Construction of a high-affinity receptor site for dihydropyridine agonists and antagonists by single amino acid substitutions in a non-L-type Ca2+ channel. Proc Natl Acad Sci USA 1997; 94:14906–14911.

    Article  PubMed  CAS  Google Scholar 

  56. Ito H, Klugbauer N, Hofmann F. Transfer of the high affinity dihydropyridine sensitivity from L-type to non-L-type calcium channel. Mol Pharmacol 1997; 52:735–740.

    PubMed  CAS  Google Scholar 

  57. Sinnegger MJ, Wang ZY, Grabner M et al. Nine L-type amino acid residues confer full 1,4-dihydropyridine sensitivity to the neuronal calcium channel α1A subunit-Role of L-type MET. J Biol Chem 1997; 272:27686–27693.

    Article  PubMed  CAS  Google Scholar 

  58. Kraus R, Reichl B, Kimball SD et al. Identification of benz(othi)azepine-binding regions within L-type calcium channel α1 subunits. J Biol Chem 1996; 271:20113–20118.

    Article  PubMed  CAS  Google Scholar 

  59. Striessnig J, Glossmann H, Catterall WA. Identification of a phenylalkylamine binding region within the α1 subunit of skeletal muscle Ca2+ channels. Proc Natl Acad Sci USA 1990a; 87:9108–9112.

    Article  PubMed  CAS  Google Scholar 

  60. Reuter H. Calcium channel modulation by neurotransmitters, enzymes and drugs. Nature 1983; 301:569–574.

    Article  PubMed  CAS  Google Scholar 

  61. Tsien RW. Calcium channels in excitable cell membranes. Annu Rev Physiol 1983; 45:341–358.

    Article  PubMed  CAS  Google Scholar 

  62. Schmid A, Barhanin J, Coppola T et al. Immunochemical analysis of subunit structures of 1,4-dihydropyridine receptors associated with voltage dependent Ca++ channels in skeletal, cardiac and smooth muscle. Biochemistry 1986; 25:3492–3495.

    Article  PubMed  CAS  Google Scholar 

  63. Takahashi M, Catterall WA. Dihydropyridine-sensitive calcium channels in cardiac and skeletal muscle membranes: studies with antibodies against the alpha subunits. Biochemistry 1987a; 26:5518–5526.

    Article  PubMed  CAS  Google Scholar 

  64. Chang FC, Hosey MM. Dihydropyridine and phenylalkylamine receptors associated with cardiac and skeletal muscle calcium channels are structurally different. J Biol Chem 1988; 263:18929–18937.

    PubMed  CAS  Google Scholar 

  65. Kuniyasu A, Oka K, Ide-Yamada T et al. Structural characterization of the dihydropyridine receptor-linked calcium channel from porcine heart. J Biochem(Tokyo) 1992; 112:235–242.

    PubMed  CAS  Google Scholar 

  66. Schneider T, Hofmann F. The bovine cardiac receptor for calcium channel blockers is a 195-kDa protein. Eur J Biochem 1988; 174:369–375.

    Article  PubMed  CAS  Google Scholar 

  67. Tokumaru H, Anzai K, Abe T et al. Purification of the cardiac 1,4-dihydropyridine receptor using immunoaffinity chromatography with a monoclonal antibody against the α2δ subunit of the skeletal muscle dihydropyridine receptor. Eur J Pharmacol Mol Pharmacol 1992; 227:363–370.

    Article  CAS  Google Scholar 

  68. Tuana BS, Murphy BJ, Yi Q. Subcellular distribution and isolation of the Ca2+ antagonist receptor associated with the voltage regulated Ca2+ channel from rabbit heart muscle. Mol Cell Biochem 1987; 76:173–184.

    Article  PubMed  CAS  Google Scholar 

  69. Ferry DR, Goll A, Glossmann H. Photoaffinity labelling of the cardiac calcium channel. (-)-[3H]azidopine labels a 165 kDa polypeptide, and evidence against a [3H]=l,4-dihydropyridine-isothiocyanate being a calcium-channel-specific affinity ligand. Biochem J 1987; 243:127–135.

    PubMed  CAS  Google Scholar 

  70. De Jongh KS, Murphy BJ, Colvin AA et al. Specific phosphorylation of a site in the full-length form of the α1 subunit of the cardiac L-type calcium channel by cAMP-dependent protein kinase. Biochemistry 1996; 35:10392–10402.

    Article  PubMed  Google Scholar 

  71. Wei XNA, Lacerda AE, Olcese R et al. Modification of Ca2+ channel activity by deletions at the carboxyl terminus of the cardiac α1 subunit. J Biol Chem 1994; 269:1635–1640.

    PubMed  CAS  Google Scholar 

  72. Gao T, Cuadra AE, Ma H et al. C-terminal fragments of the alpha 1C (Cav1.2) subunit associate with and regulate L-type calcium channels containing C-terminal-truncated alpha 1C subunits. J Biol Chem 2001; 276:21089–21097.

    Article  PubMed  CAS  Google Scholar 

  73. Armstrong DL, Rossier MF, Scherbatko AD et al. Enzymatic gating of voltage-activated calcium channels. Ann NY Acad Sci 1991; 635:26–34.

    Article  PubMed  CAS  Google Scholar 

  74. McDonald TF, Pelzer S, Trautwein W et al. Regulation and modulation of calcium channels in cardiac, skeletal, and smooth muscle cells. Physiol Rev 1994; 74:365–507.

    PubMed  CAS  Google Scholar 

  75. Mitterdorfer J, Froschmayr M, Grabner M et al. Identification of PK-A phosphorylation sites in the carboxyl terminus of L-type calcium channel α1 subunits. Biochemistry 1996; 35:9400–9406.

    Article  PubMed  CAS  Google Scholar 

  76. Gao T, Yatani A, Dell’Acqua ML et al. cAMP-dependent regulation of cardiac L-type Ca2+ channels requires membrane targeting of PKA and phosphorylation of channel subunits. Neuron 1997; 19:185–196.

    Article  PubMed  CAS  Google Scholar 

  77. Gao TY, Puri TS, Gerhardstein BL et al. Identification and subcellular localization of the subunits of L-type calcium channels and adenylyl cyclase in cardiac myocytes. J Biol Chem 1997; 272:19401–19407.

    Article  PubMed  CAS  Google Scholar 

  78. Biel M, Hullin R, Freundner S et al. Tissue-specific expression of high-voltage-activated dihydropyridine-sensitive L-type calcium channels. Eur J Biochem 1991; 200:81–88.

    Article  PubMed  CAS  Google Scholar 

  79. Hullin R, Singer-Lahat D, Freichel M et al. Calcium channel beta subunit heterogeneity: Functional expression of cloned cDNA from heart, aorta and brain. EMBO J 1992; 11:885–890.

    PubMed  CAS  Google Scholar 

  80. Sculptoreanu A, Rotman E, Takahashi M et al. Voltage-dependent potentiation of the activity of cardiac L-type calcium channel α1 subunits due to phosphorylation by cAMP-dependent protein kinase. Proc Natl Acad Sci USA 1993; 90:10135–10139.

    Article  PubMed  CAS  Google Scholar 

  81. Yoshida A, Takahashi M, Nishimura S et al. Cyclic AMP-dependent phosphorylation and regulation of the cardiac dihydropyridine-sensitive Ca channel. FEBS Lett 1992a; 309:343–349.

    Article  PubMed  CAS  Google Scholar 

  82. Zong X, Schreieck J, Mehrke G et al. On the regulation of the expressed L-type calcium channel by cAMP-dependent phosphorylation. Pflugers Arch 1995; 430:340–347.

    Article  PubMed  CAS  Google Scholar 

  83. Haase H, Bartel S, Karczewski P et al. In-vivo phosphorylation of the cardiac L-type calcium channel beta-subunit in response to catecholamines. Mol Cell Biochem 1996; 163–164:99–106.

    Article  PubMed  Google Scholar 

  84. Bunemann M, Gerhardstein BL, Gao TY et al. Functional regulation of L-type calcium channels via protein kianse A-mediated phosphorylation of the beta-2 subunit. J Biol Chem 1999; 274:33851–33854.

    Article  PubMed  CAS  Google Scholar 

  85. Takahashi M, Catterall WA. Identification of an alpha subunit of dihydropyridine-sensitive brain calcium channels. Science 1987b; 236:88–91.

    Article  PubMed  CAS  Google Scholar 

  86. Takahashi M, Fujimoto Y. Identification of a dihydropyridine-sensitive calcium channel in chick brain by a monoclonal antibody. Biochem Biophys Res Comm 1989; 163:1182–1188.

    Article  PubMed  CAS  Google Scholar 

  87. Tsien RW, Lipscombe D, Madison DV et al. Multiple types of neuronal calcium channels and their selective modulation. Trends Neurosci 1988; 11:431–438.

    Article  PubMed  CAS  Google Scholar 

  88. Bean BP. Classes of calcium channels in vertebrate cells. Annu Rev Physiol 1989; 51:367–384.

    Article  PubMed  CAS  Google Scholar 

  89. Llinas R, Sugimori M, Hillman DE et al. Distribution and functional significance of the P-type, voltage-dependent Ca2+ channels in the mammalian central nervous system. Trends Neurosci 1992; 15:351–355.

    Article  PubMed  CAS  Google Scholar 

  90. Zhang J-F, Randall AD, Ellinor PT et al. Distinctive pharmacology and kinetics of cloned neuronal Ca2+ channels and their possible counterparts in mammalian CNS neurons. Neuropharmacology 1993; 32:1075–1088.

    Article  PubMed  CAS  Google Scholar 

  91. Leveque C, El Far O, Martin-Moutot N et al. Purification of the N-type calcium channel associated with syntaxin and synaptotagmin: a complex implicated in synaptic vesicle exocytosis. J Biol Chem 1994; 269:6306–6312.

    PubMed  CAS  Google Scholar 

  92. McEnery MW, Snowman AM, Sharp AH et al. Purified CO-conotoxin GVIA receptor of rat brain resembles a dihydropyridine-sensitive L-type calcium channel. Proc Natl Acad Sci USA 1991; 88:11095–11099.

    Article  PubMed  CAS  Google Scholar 

  93. Sakamoto J, Campbell KP. A monoclonal antibody to the β subunit of the skeletal muscle dihydropyridine receptor immunoprecipitates the brain ω-conotoxin GVIA receptor. J Biol Chem 1991; 266:18914–18919.

    PubMed  CAS  Google Scholar 

  94. Witcher DR, De Waard M, Sakamoto J et al. Subunit identification and reconstitution of the N-type Ca2+ channel complex purified from brain. Science 1993; 261:486–489.

    Article  PubMed  CAS  Google Scholar 

  95. Dubel SJ, Starr TVB, Hell J et al. Molecular cloning of the α-1 subunit of an ω-conotoxin-sensitive calcium channel. Proc Natl Acad Sci USA 1992; 89:5058–5062.

    Article  PubMed  CAS  Google Scholar 

  96. Williams ME, Brust PF, Feldman DH et al. Structure and functional expression of an omega-conotoxin-scnsitive human N-type calcium channel. Science 1992; 257:389–395.

    Article  PubMed  CAS  Google Scholar 

  97. Hell JW, Appleyard SM, Yokoyama CT et al. Differential phosphorylation of two size forms of the N-type calcium channel α1 subunit which have different COOH-termini. J Biol Chem 1993; 269:7390–7396.

    Google Scholar 

  98. Westenbroek RE, Hell JW, Warner C et al. Biochemical properties and subcellular distribution of an N-type calcium channel α1 subunit. Neuron 1992; 9:1099–1115.

    Article  PubMed  CAS  Google Scholar 

  99. Liu H, De Waard M, Scott VES et al. Identification of three subunits of the high affinity ω-conotoxin MVIIC-sensitive Ca2+ channel. J Biol Chem 1996; 271:13804–13810.

    Article  PubMed  CAS  Google Scholar 

  100. Martin-Moutot N, Charvin N, Leveque C et al. Interaction of SNARE complexes with P/Q-type calcium channels in rat cerebellar synaptosomes. J Biol Chem 1996; 271:6567–6570.

    Article  PubMed  CAS  Google Scholar 

  101. Martin-Moutot N, Leveque C, Sato K et al. Properties of omega conotoxin MVIIC receptors associated with α1A calcium channel subunits in rat brain. FEBS Lett 1995; 366:21–25.

    Article  PubMed  CAS  Google Scholar 

  102. Letts VA, Felix R, Biddlecome GH et al. The mouse stargazer gene encodes a neuronal Ca2+-channel γ subunit. Nature Genet 1998; 19:340–347.

    Article  PubMed  CAS  Google Scholar 

  103. Mori Y, Friedrich T, Kim M-S et al. Primary structure and functional expression from complementary DNA of a brain calcium channel. Nature 1991; 350:398–402.

    Article  PubMed  CAS  Google Scholar 

  104. Starr TVB, Prystay W, Snutch TP. Primary structure of a calcium channel that is highly expressed in the rat cerebellum. Proc Natl Acad Sci USA 1991; 88:5621–5625.

    Article  PubMed  CAS  Google Scholar 

  105. Sakurai T, Hell JW, Woppmann A et al. Immunochemical identification and differential phosphorylation of alternatively spliced forms of the α1A subunit of brain calcium channels. J Biol Chem 1995; 270:21234–21242.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Catterall, W.A. (2005). Biochemical Studies of Voltage-Gated Ca2+ Channels. In: Voltage-Gated Calcium Channels. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27526-6_4

Download citation

Publish with us

Policies and ethics