Skip to main content

Forward Genetic Analysis of TLR Pathways

A Shared System for the Detection of Endotoxin and Viral Infection

  • Chapter
Book cover Toll and Toll-Like Receptors: An Immunologic Perspective

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 679 Accesses

Abstract

The mammalian Toll-like receptors (TLRs) were first recognized as innate immune sensors when it was discovered that TLR4 is the key component of the mammalian endotoxin (lipopolysaccharide; LPS) receptor. This determination was made when a spontaneous mouse mutation, Lps, was positionally cloned and found to reside with the Tlr4 locus. In all, we now know of the existence of eleven mouse TLRs and ten human TLRs, which collectively serve as the principal sensors of the innate immune system. Without them, small inocula of microorganisms would pose a major threat to the host, growing unchecked for a long period of time before they are recognized. These TLRs are served by a collection of at least five adapter proteins, each with homology to the TLRs themselves, permitting homotypic interaction to occur. Since a pure forward genetic approach led to the identification of the LPS receptor, ENU mutagenesis has been applied to the identification of other critical components of TLR signaling pathways. This approach has revealed that one of the adapter proteins, Lps2 (also known as Trif or Ticam-1) is required for normal responses to double-stranded RNA and LPS. It now appears that two and only two branches of the LPS sensing pathway exist downstream of TLR4 in macrophages: one dependent upon the joint function of the adapter proteins MyD88 and MAL/Tirap; the other dependent upon Lps2. Poly I:C sensing, on the other hand, has but one recognizable branch, leading to type I interferon induction. Lps2 is an indispensable component of this branch. Destructive mutations affecting Lps2 cause resistance to LPS toxicity, but also, heightened susceptibility to infection by mouse cytomegalovirus (mCMV). Lps2 is therefore the most proximal component of a signal integration system required for innate immune responses to both viral and bacterial infections.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  2. Beutler B, Rietschel ET. Timeline: Innate immune sensing and its roots: the story of endotoxin. Nat Rev Immunol 2003; 3(2): 169–176.

    Article  PubMed  CAS  Google Scholar 

  3. Pfeiffer R. Untersuchungen tiber das Choleragift. Z Hygiene 1892; 11:393–412.

    Article  Google Scholar 

  4. Heppner G, Weiss DW. High susceptibility of strain A mice to endotoxin and endotoxin red blood cell mixtures. J Bacteriol 1965; 90:696–703.

    PubMed  CAS  Google Scholar 

  5. Coutinho A, Meo T. Genetic basis for unresponsiveness to lipopolysaccharide in C57BL/10Cr mice. Immunogenetics 1978; 7:17–24.

    Article  Google Scholar 

  6. Watson J, Kelly K, Largen M et al. The genetic mapping of a defective LPS response gene in C3H/HeJ mice. J Immunol 1978; 120:422–424.

    PubMed  CAS  Google Scholar 

  7. O’Brien AD, Rosenstreich DL, Scher I et al. Genetic control of susceptibility to Salmonella typhimurium in mice: role of the LPS gene. J Immunol 1980; 124:20–24.

    PubMed  CAS  Google Scholar 

  8. Rosenstreich DL, Weinblatt AC, O’Brien AD. Genetic control of resistance to infection in mice. CRC Crit Rev Immunol 1982; 3:263–330.

    CAS  Google Scholar 

  9. Moore RN, Goodrum KJ, Berry LJ. Mediation of an endotoxic effect by macrophages. J Reticuloendothel Soc 1976; 19(3):187–197.

    PubMed  CAS  Google Scholar 

  10. Michalek SM, Moore RN, McGhee JR et al. The primary role of lymphoreticular cells in the mediation of host responses to bacterial endotoxin. J Infec Dis 1980; 141:55–63.

    CAS  Google Scholar 

  11. Beutler B, Mahoney J, Le Trang N et al. Purification of cachectin, a lipoprotein lipase suppressing hormone secreted by endotoxin-induced RAW 264.7 cells. J Exp Med 1985; 161:984–995.

    Article  PubMed  CAS  Google Scholar 

  12. Beutler B, Greenwald D, Hulmes JD et al. Identity of tumour necrosis factor and the macrophage-secreted factor cachectin. Nature 1985; 316:552–554.

    Article  PubMed  CAS  Google Scholar 

  13. Beutler B, Milsark IW, Cerami A. Passive immunization against cachectin/tumor necrosis factor (TNF) protects mice from the lethal effect of endotoxin. Science 1985; 229:869–871.

    Article  PubMed  CAS  Google Scholar 

  14. Wright SD, Ramos RA, Tobias PS et al. CD 14, a receptor for complexes of lipopolysaccharide (LPS) and LPS binding protein. Science 1990; 249:1431–1433.

    Article  PubMed  CAS  Google Scholar 

  15. Haziot A, Ferrero E, Kontgen F et al. Resistance to endotoxin shock and reduced dissemination of gram-negative bacteria in CDl4-deficient mice. Immunity 1996; 4(4):407–414.

    Article  PubMed  CAS  Google Scholar 

  16. Poltorak A, Smirnova I, He XL et al. Genetic and physical mapping of the Lps locus-identification of the toll-4 receptor as a candidate gene in the critical region. Blood Cells Molecules & Diseases 1998; 24(17):340–355.

    Article  CAS  Google Scholar 

  17. Nomura N, Miyajima N, Sazuka T et al. Prediction of the coding sequences of unidentified human genes. I. The coding sequences of 40 new genes (KIAA0001-KIAA0040) deduced by analysis of randomly sampled cDNA clones from human immature myeloid cell line KG-1. DNA Res 1994; 1(1):27–35.

    Article  PubMed  CAS  Google Scholar 

  18. Taguchi T, Mitcham JL, Dower SK et al. Chromosomal localization of TIL, a gene encoding a protein related to the Drosophila transmembrane receptor Toll, to human chromosome 4pl4. Genomics 1996; 32(3):486–488.

    Article  PubMed  CAS  Google Scholar 

  19. Medzhitov R, Preston-Hurlburt P, Janeway CA, Jr. A human homologue of the Drosophila Toll protein signals activation of adaptive immunity. Nature 1997; 388(6640):394–397.

    Article  PubMed  CAS  Google Scholar 

  20. Chaudhary PM, Ferguson C, Nguyen V et al. Cloning and characterization of two Toll/Interleukin-1 receptor-like genes TIL3 and TIL4: evidence for a multi-gene receptor family in humans. Blood 1998; 91(11):4020–4027.

    PubMed  CAS  Google Scholar 

  21. Rock FL, Hardiman G, Timans JC et al. A family of human receptors structurally related to Drosophila Toll. Proc Nad Acad Sci USA 1998; 95(2):588–593.

    Article  CAS  Google Scholar 

  22. Lemaitre B, Nicolas E, Michaut L et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86(6):973–983.

    Article  PubMed  CAS  Google Scholar 

  23. Takeuchi O, Kawai T, Sanjo H et al. TLR6: A novel member of an expanding Toll-like receptor family. Gene 1999; 231(1–2):59–65.

    Article  PubMed  CAS  Google Scholar 

  24. Du X, Poltorak A, Wei Y et al. Three novel mammalian toll-like receptors: gene structure, expression, and evolution. Eur Cytokine Netw 2000; 11(3):362–371.

    PubMed  CAS  Google Scholar 

  25. Chuang TH, Ulevitch RJ. Cloning and characterization of a sub-family of human toll-like receptors: hTLR7, hTLR8 and hTLR9. Eur Cytokine Netw 2000; 11(3):372–378.

    PubMed  CAS  Google Scholar 

  26. Chuang T, Ulevitch RJ. Identification of hTLRlO: a novel human Toll-like receptor preferentially expressed in immune cells. Biochim Biophys Acta 2001; 1518(1–2): 157–161.

    PubMed  CAS  Google Scholar 

  27. Janeway CA, Jr. The immune system evolved to discriminate infectious nonself from noninfectious self. Immunology Today 1992; 13(1):11–16.

    Article  PubMed  CAS  Google Scholar 

  28. Anderson KV, Bokla L, Nusslein-Volhard C. Establishment of dorsal-ventral polarity in the Drosophila embryo: the induction of polarity by the Toll gene product. Cell 1985; 42(3):791–798.

    Article  PubMed  CAS  Google Scholar 

  29. Rutschmann S, Kilinc A, Ferrandon D. Cutting edge: the toll pathway is required for resistance to gram-positive bacterial infections in Drosophila. J Immunol 2002; 168(4): 1542–1546.

    PubMed  CAS  Google Scholar 

  30. Gottar M, Gobert V, Michel T et al. The Drosophila immune response against Gram negative bacteria is mediated by a peptidoglycan recognition protein. Nature 2002; 4l6(640):644.

    Google Scholar 

  31. Levashina EA, Langley E, Green C et al. Constitutive activation of toll-mediated antifungal defense in serpin-deficient Drosophila. Science 1999; 285(5435):1917–1919.

    Article  PubMed  CAS  Google Scholar 

  32. Ligoxygakis P, Pelte N, Hoffmann JA et al. Activation of Drosophila Toll during fungal infection by a blood serine protease. Science 2002; 297(5578):114–116.

    Article  PubMed  CAS  Google Scholar 

  33. Poltorak A, Ricciardi-Castagnoli P, Citterio A et al. Physical contact between LPS and Tlr4 revealed by genetic complementation. Proc Natl Acad Sci, USA 2000; 97(5):2163–2167.

    Article  PubMed  CAS  Google Scholar 

  34. Lien E, Means TK, Heine H et al. Toll-like receptor 4 imparts ligand-specific recognition of bacterial lipopolysaccharide. J Clin Invest 2000; 105(4):497–504.

    Article  PubMed  CAS  Google Scholar 

  35. Akashi S, Nagai Y, Ogata H et al. Human MD-2 confers on mouse Toll-like receptor 4 species-specific lipopolysaccharide recognition. Int Immunol 2001; 13(12):1595–1599.

    Article  PubMed  CAS  Google Scholar 

  36. da Silva CJ, Soldau K, Christen U et al. Lipopolysaccharide is in Close Proximity to Each of the Proteins in Its Membrane Receptor Complex: Transfer from CD 14 to TLR4 and MD-2. J Biol Chem 2001; 276(24):21129–21135.

    Article  Google Scholar 

  37. Bauer S, Kirschning CJ, Hacker H et al. Human TLR9 confers responsiveness to bacterial DNA via species-specific CpG motif recognition. Proc Natl Acad Sci USA 2001; 98(16):9237–9242.

    Article  PubMed  CAS  Google Scholar 

  38. Mizel SB, West AP, Hantgan RR. Identification of a sequence in human toll-like receptor 5 required for the binding of Gram-negative flagellin. J Biol Chem 2003; 278: 23624–23629.

    Article  PubMed  CAS  Google Scholar 

  39. Schneider DS, Hudson KL, Lin TY et al. Dominant and recessive mutations define functional domains of Toll, a transmembrane protein required for dorsal-ventral polarity in the Drosophila embryo. Genes Dev 1991; 5(5):797–807.

    PubMed  CAS  Google Scholar 

  40. Ozinsky A, Underhill DM, Fontenot JD et al. The repertoire for pattern recognition of pathogens by the innate immune system is defined by cooperation between toll-like receptors. Proc Natl Acad Sci USA 2000; 97(25):13766–13771.

    Article  PubMed  CAS  Google Scholar 

  41. Du X, Poltorak A, Silva M et al. Analysis of Tlr4-mediated LPS signal transduction in macrophages by mutational modification of the receptor. Blood Cells Molecules & Diseases 1999; 25(21):328–338.

    Article  CAS  Google Scholar 

  42. Hultmark D. Macrophage differentiation marker MyD88 is a member of the Toll/IL-1 receptor family. Biochem Biophys Res Commun 1994; 199(1): 144–146.

    Article  PubMed  CAS  Google Scholar 

  43. Adachi O, Kawai T, Takeda K et al. Targeted disruption of the MyD88 gene results in loss of IL-1-and IL-18-mediated function. Immunity 1998; 9(1):143–150.

    Article  PubMed  CAS  Google Scholar 

  44. Kawai T, Adachi O, Ogawa T, et al. Unresponsiveness of MyD88-deficient mice to endotoxin. Immunity 1998; 11:115–122.

    Article  Google Scholar 

  45. Takeuchi O, Hoshino K, Kawai T et al. Differential roles of TLR2 and TLR4 in recognition of Gram-negative and Gram-positive bacterial cell wall components. Immunity 1999; 11:443–451.

    Article  PubMed  CAS  Google Scholar 

  46. Hacker H, Vabulas RM, Takeuchi O et al. Immune Cell Activation by Bacterial CpG-DNA through Myeloid Differentiation Marker 88 and Tumor Necrosis Factor Receptor-Associated Factor (TRAF)6. J Exp Med 2000; 192(4):595–600.

    Article  PubMed  CAS  Google Scholar 

  47. Akira S. Toll-like receptors: Lessons from knockout mice. Biochem Soc Transact 2000; 28(5):551–556.

    CAS  Google Scholar 

  48. Fitzgerald KA, Palsson-McDermott EM, Bowie AG et al. Mai (MyD88-adapter-like) is required for Toll-like receptor-4 signal transduction. Nature 2001; 4l3(6851):78–83.

    Article  CAS  Google Scholar 

  49. Horng T, Barton GM, Medzhitov R. TIRAP: an adapter molecule in the Toll signaling pathway. Nat Immunol 2001; 2(9):835–841.

    Article  PubMed  CAS  Google Scholar 

  50. Horng T, Barton GM, Flavell RA et al. The adaptor molecule TIRAP provides signalling specificity for Toll-like receptors. Nature 2002; 420(6913):329–333.

    Article  PubMed  CAS  Google Scholar 

  51. Yamamoto M, Sato S, Hemmi H et al. Essential role for TIRAP in activation of the signalling cascade shared by TLR2 and TLR4. Nature 2002; 420(6913):324–329.

    Article  PubMed  CAS  Google Scholar 

  52. Suzuki N, Suzuki S, Duncan GS et al. Severe impairment of interleukin-1 and Toll-like receptor signalling in mice lacking IRAK-4. Nature 2002; 4l6(6882):750–756.

    Article  CAS  Google Scholar 

  53. Lomaga MA, Yeh WC, Sarosi I et al. TRAF6 deficiency results in osteopetrosis and defective interleukin-1, CD40, and LPS signaling. Genes Dev 1999; 13(8):1015–1024.

    PubMed  CAS  Google Scholar 

  54. Lee J, Mira-Arbibe L, Ulevitch RJ. TAK1 regulates multiple protein kinase cascades activated by bacterial lipopolysaccharide. J Leukoc Biol 2000; 68(6):909–915.

    PubMed  CAS  Google Scholar 

  55. Kawai T, Takeuchi O, Fujita T et al. Lipopolysaccharide stimulates the MyD88-independent pathway and results in activation of IFN-regulatory factor 3 and the expression of a subset of lipopolysaccharide-inducible genes. J Immunol 2001; 167(10):5887–5894.

    PubMed  CAS  Google Scholar 

  56. Hoshino K, Kaisho T, Iwabe T et al. Differential involvement of IFN-beta in Toll-like receptor-stimulated dendritic cell activation. Int Immunol 2002; 14(10): 1225–1231.

    Article  PubMed  CAS  Google Scholar 

  57. Hoebe K, Du X, Goode J et al. Lps2: A new locus required for responses to lipopolysaccharide, revealed by germline mutagenesis and phenotypic screening. J Endotoxin Res 2003; 9(4):250–255.

    Article  PubMed  CAS  Google Scholar 

  58. Yamamoto M, Sato S, Mori K et al. Cutting edge: a novel Toll/IL-1 receptor domain containing adapter that preferentially activates the IFN-beta promoter in the Toll-like receptor signaling. J Immunol 2002; 169(12):6668–6672.

    PubMed  CAS  Google Scholar 

  59. Oshiumi H, Matsumoto M, Funami K et al. TICAM-1, an adaptor molecule that participates in Toll-like receptor 3-mediated interferon-beta induction. Nat Immunol 2003; 4:161–171.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Beutler, B., Hoebe, K., Georgel, P., Du, X. (2005). Forward Genetic Analysis of TLR Pathways. In: Toll and Toll-Like Receptors: An Immunologic Perspective. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27445-6_9

Download citation

Publish with us

Policies and ethics