Skip to main content

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 693 Accesses

Abstract

In the fruit fly Drosophila melanogaster, the Toll receptor plays two major roles, one is in early development and the other concerns resistance to infection. In mammals, the multiple Toll-Like Receptors (TLRs) are known to be key mediators of innate immunity. Caenorhabditis elegans possesses only one TLR (TOL-1) which is required during development, in a TIR-domain independent fashion. It also functions indirecdy in defence, via a behavioral mechanism that keeps worms away from the pathogenic bacterium Serratia marcescens. We describe here that the tol-1-dependent avoidance behavior involves the recognition of a signal that includes contributions from both the bacteria and the worms, themselves. We outline the current understanding of how C. elegans detects bacteria and other worms and speculate on a possible link between chemosensation and immune recognition.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beutler B, Rehli M. Evolution of the TIR, tolls and TLRs: functional inferences from computational biology. Curr Top Microbiol Immunol 2002; 270:1–21.

    PubMed  CAS  Google Scholar 

  2. Ewbank JJ, Gorvel JP, Vivier E. A Widely Conserved Smell of Danger. Sci STKE 2003; PE9.

    Google Scholar 

  3. Jebanathirajah JA, Peri S, Pandey A. Toll and interleukin-1 receptor (TIR) domain-containing proteins in plants: a genomic perspective. Trends Plant Sci 2002; 7:388–91.

    Article  PubMed  CAS  Google Scholar 

  4. Imler JL, Hoffinann JA. Toll receptors in Drosophila: A family of molecules regulating development and immunity. Curr Top Microbiol Immunol 2002; 270:63–79.

    PubMed  CAS  Google Scholar 

  5. Eichinger L, Noegel AA. Crawling into a new era-the Dictyostelium genome project. Embo J 2003; 22:1941–6.

    Article  PubMed  CAS  Google Scholar 

  6. Imler JL, Hoffmann JA. Toll and Toll-like proteins: an ancient family of receptors signalling infection. Rev Immunogenet 2002; 2:294–304.

    Google Scholar 

  7. Kambris Z, Hoffmann JA, Imler JL et al. Tissue and stage-specific expression of the Tolls in Drosophila embryos. Gene Expr Patterns 2002; 2:311–7.

    Article  PubMed  CAS  Google Scholar 

  8. Lemaitre B, Nicolas E, Michaut L et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in Drosophila adults. Cell 1996; 86:973–83.

    Article  PubMed  CAS  Google Scholar 

  9. Rutschmann S, Kilinc A, Ferrandon D. The toll pathway is required for resistance to Gram-positive bacterial infections in Drosophila. J Immunol 2002; 168:1542–6.

    PubMed  CAS  Google Scholar 

  10. Poltorak A, He X, Smirnova I et al. Defective LPS signaling in C3H/HeJ and C57BL/10ScCr mice: mutations in Tlr4 gene. Science 1998; 282:2085–2088.

    Article  PubMed  CAS  Google Scholar 

  11. Ewbank JJ. Tackling both sides of the host-pathogen equation with Caenorhabditis elegans. Microbes and Infection 2002; 4:247–56.

    Article  PubMed  Google Scholar 

  12. Pujol N, Link EM, Liu LX et al. A reverse genetic analysis of components of the Toll signaling pathway in Caenorhabditis elegans. Curr Biol 2001; 11:809–21.

    Article  PubMed  CAS  Google Scholar 

  13. Couillault C, Ewbank JJ. Diverse Bacteria Are Pathogens of Caenorhabditis elegans. Infect Immun 2002; 70:4705–7.

    Article  PubMed  CAS  Google Scholar 

  14. Darby C, Cosma CL, Thomas JH et al. Lethal paralysis of Caenorhabditis elegans by Pseudomonas aeruginosa. Proc Nad Acad Sci USA 1999; 96:15202–7.

    Article  CAS  Google Scholar 

  15. Hodgkin J, Kuwabara PE, Corneliussen B. A novel bacterial pathogen, Microbacterium nematophilum, induces morphological change in the nematode C. elegans. Curr Biol 2000; 10:1615–1618.

    Article  PubMed  CAS  Google Scholar 

  16. Aballay A, Drenkard E, Hilbun LR et al. Caenorhabditis elegans innate immune response triggered by Salmonella enterica requires intact LPS and is mediated by a MAPK signaling pathway. Curr Biol 2003; 13:47–52.

    Article  PubMed  CAS  Google Scholar 

  17. Andrew PA, Nicholas WL. Effect of bacteria on dispersal of Caenorhabditis elegans (Rhabditidae). Nematologica 1976; 22:451–461.

    Article  Google Scholar 

  18. Grewal PS, Wright DJ. Migration of Caenorhabditis elegans (Nematoda: Rhabditidae) larvae towards bacteria and the nature of the bacterial stimulus. Fundam Appl Nematol 1992; 15:159–166.

    Google Scholar 

  19. Kurz CL, Chauvet S, Andres E et al. Virulence factors of the human opportunistic pathogen Serratia marcescens identified by in vivo screening. Embo J 2003; 22:1451–1460.

    Article  PubMed  CAS  Google Scholar 

  20. Mallo GV, Kurz CL, Couillault C et al. Inducible antibacterial defence system in C. elegans. Curr Biol 2002; 12:1209–14.

    Article  PubMed  CAS  Google Scholar 

  21. Golden JW, Riddle DL. A pheromone-induced developmental switch in Caenorhabditis elegans: Temperature-sensitive mutants reveal a wild-type temperature-dependent process. Proc Natl Acad Sci USA 1984; 81:819–23.

    Article  PubMed  CAS  Google Scholar 

  22. Simon JM, Sternberg PW. Evidence of a mate-finding cue in the hermaphrodite nematode Caenorhabditis elegans. Proc Natl Acad Sci USA 2002; 99:1598–603.

    Article  PubMed  CAS  Google Scholar 

  23. Hilliard MA, Bargmann CI, Bazzicalupo P. C. elegans Responds to Chemical Repellents by Integrating Sensory Inputs from the Head and the Tail. Curr Biol 2002; 12:730–4.

    Article  PubMed  CAS  Google Scholar 

  24. Troemel ER, Chou JH, Dwyer ND et al. Divergent seven transmembrane receptors are candidate chemosensory receptors in C. elegans. Cell 1995; 83:207–18.

    Article  PubMed  CAS  Google Scholar 

  25. Troemel ER, Kimmel BE, Bargmann CI Reprogramming chemotaxis responses: sensory neurons define olfactory preferences in C. elegans. Cell 1997; 91:161–9.

    Article  PubMed  CAS  Google Scholar 

  26. Wes PD, Bargmann CI. C. elegans odour discrimination requires asymmetric diversity in olfactory neurons. Nature 2001; 410:698–701.

    Article  PubMed  CAS  Google Scholar 

  27. Sagasti A, Hisamoto N, Hyodo J et al. The CaMKII UNC-43 activates the MAPKKK NSY-1 to execute a lateral signaling decision required for asymmetric olfactory neuron fates. Cell 2001; 105:221–32.

    Article  PubMed  CAS  Google Scholar 

  28. Tanaka-Hino M, Sagasti A, Hisamoto N et al. SEK-1 MAPKK mediates Ca2+ signaling to determine neuronal asymmetric development in Caenorhabditis elegans. EMBO 2002; 3:56–62.

    Article  CAS  Google Scholar 

  29. Kim DH, Feinbaum R, Alloing G et al. A conserved p38 MAP kinase pathway in Caenorhabditis elegans innate immunity. Science 2002; 297:623–6.

    Article  PubMed  CAS  Google Scholar 

  30. Sawin ER, Ranganathan R, Horvitz HR. C. elegans locomotory rate is modulated by the environment through a dopaminergic pathway and by experience through a serotonergic pathway. Neuron 2000; 26:619–31.

    Article  PubMed  CAS  Google Scholar 

  31. Peckol EL, Troemel ER, Bargmann CI. Sensory experience and sensory activity regulate chemosensory receptor gene expression in Caenorhabditis elegans. Proc Natl Acad Sci USA 2001; 98:11032–8.

    Article  PubMed  CAS  Google Scholar 

  32. White JG, Southgate E, Thomson JN et al. The structure of the nervous system of the nematode C. elegans. Philosophical Transactions of the Royal Society of London 1986; 314B:1–340.

    Google Scholar 

  33. Imler JL, Hoffmann JA. Toll signaling: the TIReless quest for specificity. Nat Immunol 2003; 4:105–6.

    Article  PubMed  CAS  Google Scholar 

  34. Sorensen PW, Christensen TA, Stacey NE. Discrimination of pheromonal cues in fish: Emerging parallels with insects. Curr Opin Neurobiol 1998; 8:458–67.

    Article  PubMed  CAS  Google Scholar 

  35. Loconto J, Papes F, Chang E et al. Functional expression of murine V2R pheromone receptors involves selective association with the M10 and Ml families of MHC class Ib molecules. Cell 2003; 112:607–18.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Pujol, N., Ewbank, J.J. (2005). Pathogen Avoidance Using Toll Signaling in C. elegans . In: Toll and Toll-Like Receptors: An Immunologic Perspective. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-27445-6_8

Download citation

Publish with us

Policies and ethics