Skip to main content

Calcium Dependence of Calcium Release Channels (Ryanodine Receptors) from Skeletal and Cardiac Muscle

  • Chapter
Pumps, Transporters, and Ion Channels

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

6. References

  • Abramson J. J., A. C. Zable, T. G. Favero and G. Salama. 1995. Thimerosal interacts with the Ca2+ release channel ryanodine receptor from skeletal muscle sarcoplasmic reticulum. J. Biol Chem. 270:29644–29647.

    Article  Google Scholar 

  • Aghdasi, B., M. B. Reid and S.L. Hamilton. 1997. Nitric oxide protects the skeletal muscle Ca2+ release channel from oxidation induced activation. J. Biol. Chem. 272:25462–25467.

    Article  Google Scholar 

  • Berridge M. J., Lipp, P. and Bootman, M. D. 2000. The versatility and universality of calcium signalling. Nat Rev Mol Cell Biol, 1: 11–21.

    Article  Google Scholar 

  • Bers, D. M. 2002. Cardiac excitation-contraction coupling. Nature 415:198–205.

    Article  ADS  Google Scholar 

  • Bull, R., and J. J. Marengo. 1994. Calcium-dependent halothane activation of sarcoplasmic reticulum calcium channels from frog skeletal muscle. Am. J. Physiol 266 (Cell Physiol. 35): C391–C396.

    Google Scholar 

  • Chu, A., M. Fill, E. Stefani and M. L. Entman. 1993. Cytoplasmic Ca2+ does not inhibit the cardiac muscle sarcoplasmic reticulum ryanodine receptor Ca2+ channel, although Ca2+-induced Ca2+ inactivation of Ca2+ release is observed in native vesicles. J. Membr. Biol. 135:49–59.

    Google Scholar 

  • Coronado, R., J. Morrissette, M. Sukhareva, and D. N. Vaughan. 1994. Structure and function of ryanodine receptors. Am. J. Physiol 266 (Cell Physiol. 35): C1485–C1504.

    Google Scholar 

  • Donoso, P., H. Prieto and C. Hidalgo. 1995. Luminal calcium regulates calcium release in triads isolated from frog and rabbit skeletal muscle. Biophys. J. 68: 507–515.

    Article  ADS  Google Scholar 

  • Donoso, P., P. Aracena and C. Hidalgo. 2000. SH oxidation overrides Mg2+ inhibition of calcium induced calcium release in skeletal muscle triads. Biophys J. 79:279–286.

    Article  Google Scholar 

  • Eager, K. R., L. D. Roden, and A. F. Dulhunty. 1997. Actions of sulfhydryl reagents on single ryanodine receptor Ca2+-release channels from sheep myocardium. Am. J. Physiol 272 (Cell Physiol. 41): C1908–C1918.

    Google Scholar 

  • Fabiato, A. 1985. Time and calcium dependence of activation and inactivation of calcium-induced release of calcium from the sarcoplasmic reticulum of a skinned canine cardiac Purkinje cell. J. Gen Physiol. 85:247–289.

    Article  Google Scholar 

  • Favero, T. G., A. C. Zable, and J. J. Abramson. 1995. Hydrogen peroxide stimulates the Ca release channel from skeletal muscle sarcoplasmic reticulum. J. Biol Chem. 270:25557–25563.

    Article  Google Scholar 

  • Franzini-Armstrong C. and F. Protasi. 1997. Ryanodine receptors of striated muscles: a complex channel capable of multiple interactions. Physiol Rev, 77: 699–729.

    Google Scholar 

  • Hartree, E. F. 1972. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Analytical Biochem. 48, 422–427.

    Article  Google Scholar 

  • Hidalgo, C, J. Jorquera, V. Tapia, and P. Donoso. 1993. Triads and transverse tubules isolated from frog skeletal muscle contain high levels of inositol 1,4,5-trisphosphate. J. Biol. Chem. 268:15111–15117.

    Google Scholar 

  • Hidalgo, C, P. Aracena, G. Sanchez and P. Donoso. 2002. Redox regulation of calcium release in skeletal and cardiac muscle. Biol. Res., in press.

    Google Scholar 

  • Inui, M., S. Wang, A., Saito and S. Fleischer. 1988. Characterization of junctional and longitudinal sarcoplasmic reticulum from heart muscle. J. Biol. Chem. 263:10843–10850.

    Google Scholar 

  • Kaneko, M., Y. Matsumoto, H. Hayashi, A. Kobayashi, and N. Yamazaki. 1994. Oxygen free radicals and calcium homeostasis in the heart. Mol. Cell Biochem. 139:91–100.

    Article  Google Scholar 

  • Lamb G. D. 2000. Excitation-contraction coupling in skeletal muscle: comparisons with cardiac muscle. Clin Exp Pharmacol Physiol, 27:216–224.

    Article  Google Scholar 

  • Menshikova, E. V. and G. Salama. 2000. Cardiac ischemia oxidizes regulatory thiols on ryanodine receptors: captopril acts as a reducing agent to improve Ca2+ uptake by ischemic sarcoplasmic reticulum. J. Cardiovasc. Pharmacol. 36:656–668.

    Article  Google Scholar 

  • Meissner, G. 1994. Ryanodine receptor/Ca2+ release channels and their regulation by endogenous effectors. Annu. Rev. Physiol. 56:485–508.

    Article  Google Scholar 

  • Meissner, G., E. Darling and J. Eveleth. 1986. Kinetics of rapid Ca2+ release by sarcoplasmic reticulum. Effects of Ca2+, Mg2+, and adenine nucleotides. Biochemistry 25: 236–244.

    Article  Google Scholar 

  • Moutin M. J. and Y. Dupont. 1988. Rapid filtration studies of Ca2+-induced Ca2+ release from skeletal sarcoplasmic reticulum. Role of monovalent ions. J Biol Chem, 263: 4228–4235.

    Google Scholar 

  • Prabhu, S.D. and G. Salama. 1990. Reactive disulfide compounds induce Ca2+ release from cardiac sarcoplasmic reticulum. Arch Biochem Biophys, 282: 275–283.

    Article  Google Scholar 

  • Rios, E. and G. Pizarro. 1991. Voltage sensor of excitation-contraction coupling in skeletal muscle. Physiol Rev, 71: 849–908.

    Google Scholar 

  • Salama, G., J. J. Abramson, and G. K. Pike. 1992. Sulfhydryl reagents trigger Ca2+ release from the sarcoplasmic reticulum of skinned rabbit psoas fibres. J Physiol, 454: 389–420.

    Google Scholar 

  • Shirokova N., J. Garcia and E. Rios. 1998. Local calcium release in mammalian skeletal muscle. J Physiol, 1512( Pt 2): 377–384.

    Article  Google Scholar 

  • Suko, J. and G. Hellman. 1998. Modification of sulfhydryIs of the skeletal muscle calcium release channel by organic mercurial compounds alters Ca2+ affinity of regulatory Ca2+ sites in single channel recordings and [3H]ryanodine binding. Biochem. Biophys. Acta 1404:435–450.

    Article  Google Scholar 

  • Trimm, J. L., G. Salama and J. J. Aramson. 1986. Sulfhydryl oxidation induces rapid calcium release from sarcoplasmic reticulum vesicles. J Biol Chem, 261: 16092–16098.

    Google Scholar 

  • Zaidi, N. F., C. F. Lagenaur, J. J. Abramson, I Pessah and G. Salama. 1989. Reactive disulfides trigger Ca2+ release from sarcoplasmic reticulum via an oxidation reaction. J Biol Chem, 264: 21725–21736.

    Google Scholar 

  • Zucchi R., and S. Ronca-Testoni. 1997. The sarcoplasmic reticulum Ca2+ channel/ryanodine receptor: modulation by endogenous effectors, drugs and disease states. Pharmacol. Rev. 49: 1–51.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Kluwer Academic/Plenum Publishers, New York

About this chapter

Cite this chapter

Hidalgo, C., Donoso, P., Bull, R. (2005). Calcium Dependence of Calcium Release Channels (Ryanodine Receptors) from Skeletal and Cardiac Muscle. In: Sepúlveda, F.V., Bezanilla, F. (eds) Pumps, Transporters, and Ion Channels. Series of the Centro de Estudios Científicos. Springer, Boston, MA. https://doi.org/10.1007/0-387-27424-3_4

Download citation

Publish with us

Policies and ethics