Skip to main content

Summary and Future Perspectives

  • Chapter
  • 258 Accesses

Part of the book series: Ecological Studies ((ECOLSTUD,volume 178))

Abstract

Although adaptations in the photosynthetic process occur across the hierarchy of botanical organization, evolutionary change by natural selection acts only on the organism, within the framework of the population. However, selective pressure for specific organism traits can be generated at higher levels of organization and complexity due to emerging constraints on resource acquisition (Chapter 1, Fig. 1.1). It is also important to understand that upscale adaptations may provide the selective pressure for downscale adaptations that will be complementary. As demonstrated in the preceding chapters, evidence for adaptations in photosynthesis continue to emerge at higher levels of the structural/spatial hierarchy, and may often be accompanied by corresponding metabolic changes at the cell and chloroplast level. However, these metabolic, biochemical traits may be more highly conserved compared with those governing diversity in form.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerly, D. D., and Monson, R. K. (eds.) 2003a. Evolution of Functional Traits in Plants. Int. J. Plant Sci. (Suppl.) 164.

    Google Scholar 

  • Allen, T. F. H. 1998. The landscape “level” is dead: Persuading the family to take it off the respirator. In: Ecological Scale: Theory and Application. D. L. Peterson and V.T. Parker (eds.), pp. 35–54. New York: Columbia University Press

    Google Scholar 

  • Allen, C. D., and Breshears, D. D. 1998. Drought-induced shift of a forest-woodland ecotone: rapid landscape response to climate variation. Proc. Nat. Acad. Sci. 95: 14839–14842

    Article  CAS  PubMed  Google Scholar 

  • Allen, T. F. H., and Hoekstra, T. W. 1990. The confusion between scale-defined levels and conventional levels of organization in ecology. J Veget. Sci. 1:5–12.

    Article  Google Scholar 

  • Allen, T. F. H., and Starr, T. B. 1982. Hierarchy Perspectives for Ecological Complexity. Chicago: University of Chicago Press.

    Google Scholar 

  • Anten, N. P. R., and Hirose, T. 2003. Shoot structure, leaf physiology, and daily carbon gain of plant species in a tall grass prairie. Ecology 84:955–968.

    Article  Google Scholar 

  • Björkman, O. 1981. Responses to different quantum flux densities. In: Encyclopedia of Plant Physiology, New Series, Vol. 12A. Physiological Plant Ecology. O. L. Lange, P. S. Nobel, C. B. Osmond, and H. Ziegler (eds.), pp. 57–107. Berlin: Springer-Verlag.

    Google Scholar 

  • Donovan, L. A., and Ehleringer, J. R. 1994. Carbon isotope descrimination, water use efficiency, growth and mortality in natural shrub populations. Oecologia 100:347–354.

    Article  Google Scholar 

  • Dudley, S. A. 1996a. Differing selection on plant physiological traits in response to environmental water availability: A test of adaptive hypothesis. Evolution 50:92–102.

    Article  Google Scholar 

  • Dudley, S. A. 1996b. The response to differing selection on plant physiological traits: Evidence for local adaptation. Evolution 50:103–110.

    Article  Google Scholar 

  • Ehleringer, J. R. 1993. Carbon and water relations in desert plants: An isotopic perspective. In: Stable Isotopes and Plant Carbon-Water Relations. J. R. Ehleringer, A. E. Hall, and G. D. Farquhar (eds.), pp. 155–172. San Deigo: Academic Press.

    Google Scholar 

  • Ethier, G. J., and Livingston, N. J. 2004. On the need to incorporate sensitivity to CO2 transfer conductance into the Farquar-von Caemmerer-Berry leaf photosynthesis model. Plant Cell Environ. 27:137–153.

    Article  CAS  Google Scholar 

  • Field, T. S., Arens, N. C., and Dawson, T. E. 2003. The ancestral ecology of angiosperms: Emerging perspectives from extant basal lineages. In: Evolution of Functional Traits in Plants. D. A. Ackerly and R. C. Monson (eds.), pp. 129–142. Int. J. Plant Sci. (Suppl.) 164.

    Google Scholar 

  • Garcia de Cortazar, V., and Nobel, P.S. 1986. Modeling of PAR interception and productivity of a prickly pear cactus, Opuntia ficus-indica L., at various spacings. Agron. J. 78:80–85.

    Article  Google Scholar 

  • Geber, M. A., and Griffen, L. R. 2003. Inheritance and natural selection on functional traits. In Evolution of Functional Traits in Plants, eds. D. A. Ackerly and R. C. Monson, pp. S129–S142. Int. J. Pl. Sci. (Supplement) 164, Chicago: University of Chicago Press.

    Google Scholar 

  • Germino, M. J., and Smith, W. K. 1999. Sky exposure, crown architecture, and lowtemperature photoinhibition in conifer seedlings at alpine treeline. Plant Cell Environ. 22:407–415.

    Article  Google Scholar 

  • Germino, M. J., and Smith, W. K.. 2000. High resistance to low-temperature photoinhibition in two alpine, snowbank species. Physiologia Plantarum 110:89–95.

    Article  CAS  Google Scholar 

  • Givnish, T. J., Montgomery, R. A., and Goldstein, G. 2004. Adaptive radiation of photosynthetic physiology in Hawaiian lobeliads: light regimes, static light responses, and uhde-plant compensation points. Am. J. Bot. 91:228–246.

    Article  CAS  Google Scholar 

  • Jordan, D. N., and Smith, W. K. 1993. Simulated influence of leaf geometry on sunlight interception and photosynthesis in conifer needles. Tree Physiol. 13:29–39.

    PubMed  Google Scholar 

  • Jordan, D. N., and Smith, W. K.. 1995. Radiation frost susceptibility and the association between sky exposure and leaf size. Oecologia 103:43–48.

    Article  Google Scholar 

  • Meinzer, F. C. 2003. Functional convergence in plant responses to the environment. Oecalogia 134:1–11.

    Article  Google Scholar 

  • Niinemets, Ü. 1999. Components of leaf dry mass per area thickness and density alter photosynthetic capacity in reverse directions in woody plants. New Phytol. 144:35–47.

    Article  Google Scholar 

  • Nobel, P. S. 1986. Form and orientation in relation to PAR interception by cacti and agaves. In: On the Economy of Plant Form and Function. T. J. Givnish (ed.), pp. 83–103. Cambridge: Cambridge University Press.

    Google Scholar 

  • Nobel, P. S. 1988. Environmental Biology of Agaves and Cacti. New York: Cambridge University Press.

    Google Scholar 

  • Nobel, P. S. 1999. Physiochemical and Environmental Plant Physiology, 2nd edition. San Diego: Academic Press.

    Google Scholar 

  • Nobel, P. S., and Garcia de Cortazar, V. 1987. Interception of photosynthetically active radiation and predicted productivity for Agave rosettes. Photosynthetica 21:261–272.

    Google Scholar 

  • Nobel, P. S., and Hartsock, T. L. 1986. Temperature, water, and PAR influences on predicted and measured productivity of Agave deserti at various elevations. Oecologia 68:181–185.

    Article  Google Scholar 

  • Nobel, P. S., and Loik, M. E. 1999. Form and function of cacti. In: Ecology of Sonoran Desert Plants and Plant Communities. R. H. Robichaux (ed.), pp. 143–163. Tucson: University of Arizona Press.

    Google Scholar 

  • Nobel, P. S., Zaragoza, L. J., and Smith W. K. 1975. Relation between mesophyll surface area, photosynthetic rate, and illumination level during development for leaves of Plectranthus parviflorus Hanckel. Plant Physiol. 55:1067–1070.

    Article  PubMed  CAS  Google Scholar 

  • Nobel, P. S., Cui, M., and Israel, A. A. 1994. Light, chlorophyll, carboxylase activity and CO2 fixation at various depths in the chlorenchyma of Opuntia ficus-indica (L.) Miller under current and elevated CO2. New Phytologist 128:315–322.

    Article  CAS  Google Scholar 

  • Raveh, E., Wang, N., and Nobel, P. S. 1998. Gas exchange and metabolite fluctuations in green and yellow bands of variegated leaves of the monocotyledonous CAM species Agave americana. Physiol. Plantarum 103: 99–106.

    Article  CAS  Google Scholar 

  • Reich, P. B., Wright, I. J., Cavender-Bares, J., Craine, J. M., Oleksyn, J., Westoby, M., and Walters, M. B. 2003. The evolution of plant functional variation: Traits, spectra, and strategies. In: Evolution of Functional Traits in Plants. Int. J. Plant Sci. (Suppl.) 164:1–6.

    Google Scholar 

  • Nobel, P. S. 1999. Physicochemical and Environmental Plant Physiology, 2nd ed. San Deigo: Academic Press.

    Google Scholar 

  • O’Neill, R. V., DeAngelis D. L., Waide J. B, and Allen, T. F. H. 1986. A Hierarchical Concept of Ecosystems. Princeton: Princeton University Press.

    Google Scholar 

  • Ruimy, A. L., Kergoat, Field, C. B., and Saugier, B. 1996. The use of CO2 flux measurements in models of the global terrestrial carbon budget. Global Change Biol. 2:287–296.

    Article  Google Scholar 

  • Sage, R. F. 2001. Environmental and evolutionary preconditions for the origin and diversification of the C4 photosynthetic syndrome. Plant Biol. 3:202–213

    Article  CAS  Google Scholar 

  • Schulze, E.-D., and Caldwell, M. M. 1995. Ecophysiology of Photosynthesis. New York: Springer-Verlag.

    Google Scholar 

  • Smith, W. K., and Brewer, C. A. 1994. The adaptive importance of shoot and crown architecture in conifer trees. Am. Nat. 143:528–532.

    Article  Google Scholar 

  • Smith, W. K., Vogelmann, T. C., Bell, D. T., DeLucia, E. H., and Shepherd, K. A. 1997. Leaf form and photosynthesis. BioScience 47:785–793.

    Article  Google Scholar 

  • Smith, W. K., Bell, D. T., and Shepherd, K. A. 1998. Associations between leaf orientation, structure and sunlight exposure in five western Australian communities. Am. J. Bot. 85:56–63.

    Article  CAS  Google Scholar 

  • Woodhouse, R. M., Williams, J. G., and Nobel, P. S. 1980. Leaf orientation, radiation interception, and nocturnal acidity increases by the CAM plant Agave deserti (Agavaceae). Am. J. Bot. 67:1179–1185.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Smith, W.K., Nobel, P.S., Reiners, W.A., Vogelmann, T.C., Chritchley, C. (2004). Summary and Future Perspectives. In: Smith, W.K., Vogelmann, T.C., Critchley, C. (eds) Photosynthetic Adaptation. Ecological Studies, vol 178. Springer, New York, NY. https://doi.org/10.1007/0-387-27267-4_11

Download citation

  • DOI: https://doi.org/10.1007/0-387-27267-4_11

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-22079-6

  • Online ISBN: 978-0-387-27267-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics