Skip to main content

Molecular Biology of the OXPHOS System

  • Chapter
  • 717 Accesses

Part of the book series: Medical Intelligence Unit ((MIUN))

Abstract

The mitochondrion contains a circular DNA genome (mtDNA) that serves as the basis for its own genetic system. This system is semiautonomous because the coding capacity of mtDNA is limited to 13 subunits of the respiratory chain apparatus and the rRNAs and tRNAs necessary for their translation. The inheritance of mtDNA differs from that of nuclear DNA in that it segregates randomly during mitosis and meiosis and is transmitted exclusively through the female germ line. Nucleus-encoded enzymes and factors direct the transcription and replication of mtDNA within the mitochondrial matrix. Mitochondrial translation also relies upon nucleus-encoded ribosomal proteins, synthetases and translation factors. In recent years, molecular mechanisms for the bi-genomic control of mitochondrial biogenesis and function have been elucidated.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. DiMauro S, Schon EA. Mitochondrial DNA mutations in human disease. Am J Med Genet 2001; 106(1):18–26.

    Article  PubMed  CAS  Google Scholar 

  2. Garesse R, Vallejo CG. Animal mitochondrial biogenesis and function: A regulatory cross-talk between two genomes. Gene 2001; 263(1–2):1–16.

    Article  PubMed  CAS  Google Scholar 

  3. Scarpulla RC. Nuclear activators and coactivators in mammalian mitochondrial biogenesis. Biochem Biophys Acta 2002; 1576:1–14.

    PubMed  CAS  Google Scholar 

  4. Clayton DA. Vertebrate mitochondrial DNA-A circle of surprises. Exp Cell Res 2000; 255(1):4–9.

    Article  PubMed  CAS  Google Scholar 

  5. Nass MMK, Nass S, Afzelius BA. The general occurance of mitochondrial DNA. Exp Cell Res 1965; 37:190–200.

    Article  Google Scholar 

  6. Ojala D, Montoya J, Attardi G. tRNA punctuation model of RNA processing in human mitochondria. Nature 1981; 290:470–474.

    Article  PubMed  CAS  Google Scholar 

  7. Poyton RO, McEwen JE. Crosstalk between nuclear and mitochondrial genomes. Annu Rev Biochem 1996; 65:563–607.

    Article  PubMed  CAS  Google Scholar 

  8. Costanzo MC, Fox TD. Control of mitochondrial gene expression in Saccharomyces cerevisiae. Annu Rev Genet 1990; 24:91–113.

    Article  PubMed  CAS  Google Scholar 

  9. Taanman JW. The mitochondrial genome: Structure, transcription, translation and replication. Biochim Biophys Acta Bio-Energetics 1999; 1410(2):103–123.

    Article  CAS  Google Scholar 

  10. Satoh M, Kuroiwa T. Organization of multiple nudeoids and DNA molecules in mitochondria of a human cell. Exp Cell Res 1991; 196:137–140.

    Article  PubMed  CAS  Google Scholar 

  11. Shoubridge EA. Mitochondrial DNA segregation in the developing embryo. Hum Reprod 2000; 15:229–234.

    Article  PubMed  Google Scholar 

  12. Kaneda H, Hayashi J, Takahama S et al. Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci USA 1995; 92:4542–4546.

    Article  PubMed  CAS  Google Scholar 

  13. Ashley MV, Laipis PJ, Hauswirth WW. Rapid segregation of heteroplasmic bovine mitochondria. Nucleic Acids Res 1989; 17:7325–7331.

    Article  PubMed  CAS  Google Scholar 

  14. Piko L, Taylor KD. Amounts of mitochondrial DNA and abundance of some mitochondrial gene transcripts in early mouse embryos. Dev Biol 1987; 123:364–374.

    Article  PubMed  CAS  Google Scholar 

  15. Davis AF, Clayton DA. In situ localization of mitochondrial DNA replication in intact mammalian cells. J Cell Biol 1996; 135(4):883–893.

    Article  PubMed  CAS  Google Scholar 

  16. Clayton DA. Mitochondrial DNA replication: What we know. IUBMB Life 2003; 55(4–5):213–217.

    Article  PubMed  CAS  Google Scholar 

  17. Shadel GS, Clayton DA. Mitochondrial DNA maintenance in vertebrates. Annu Rev Biochem 1997; 66:409–435.

    Article  PubMed  CAS  Google Scholar 

  18. Chang DD, Hauswirth W, Clayton DA. Replication priming and transcription initiate from precisely the same site in mouse mitochondrial DNA. EMBO J 1985; 4:1559–1567.

    PubMed  CAS  Google Scholar 

  19. Xu B, Clayton DA. A persistent RNA-DNA hybrid is formed during transcription at a phylogenetically conserved mitochondrial DNA sequence. Mol Cell Biol 1995; 15:580–589.

    PubMed  CAS  Google Scholar 

  20. Madsen CS, Ghivizzani SC, Hauswirth W. Protein binding to a single termination-associated sequence in the mitochondrial DNA D-loop region. Mol Cell Biol 1993; 13:2162–2171.

    PubMed  CAS  Google Scholar 

  21. Tapper DP, Clayton DA. Mechanism of replication of human mitochondrial DNA. Localization of the 5′ ends of nascent daughter strands. J Biol Chem 1981; 256(10):5109–5115.

    PubMed  CAS  Google Scholar 

  22. Hixson JE, Wong TW, Clayton DA. Both the conserved stem-loop and divergent 5′-flanking sequences are required for initiation at the human mitochondrial origin of light-strand DNA replication. J Biol Chem 1986; 261(5):2384–2390.

    PubMed  CAS  Google Scholar 

  23. Wong TW, Clayton DA. DNA primase of human mitochondria is associated with structural RNA that is essential for enzymatic activity. Cell 1986; 45:817–825.

    Article  PubMed  CAS  Google Scholar 

  24. Holt IJ, Lorimer HE, Jacobs HT. Coupled leading-and lagging-strand synthesis of mammalian mitochondrial DNA. Cell 2000; 100(5):515–524.

    Article  PubMed  CAS  Google Scholar 

  25. Yang MY, Bowmaker M, Reyes A et al. Biased incorporation of ribonudeotides on the mitochondrial L-strand accounts for apparent strand-asymmetric DNA replication. Cell 2002; 111(4):495–505.

    Article  PubMed  CAS  Google Scholar 

  26. Bogenhagen DF, Clayton DA. The mitochondrial DNA replication bubble has not burst. Trends Biochem Sci 2003; 28(7):357–360.

    Article  PubMed  CAS  Google Scholar 

  27. Lecrenier N, Van Der Bruggen P, Foury F. Mitochondrial DNA polymerases from yeast to man: A new family of polymerases. Gene 1997; 185(1):147–152.

    Article  PubMed  CAS  Google Scholar 

  28. Foury F. Cloning and sequencing of the nuclear gene MIP1 encoding the catalytic subunit of the yeast mitochondrial DNA polymerase. J Biol Chem 1989; 264:20552–20560.

    PubMed  CAS  Google Scholar 

  29. Wang TSF. Eukaryotic DNA polymerases. Annu Rev Biochem 1991; 60:513–552.

    Article  PubMed  CAS  Google Scholar 

  30. Insdorf NF, Bogenhagen DF. DNA polymerase gamma from Xenopus laevis. II. A 3′–5′ exonudease is tighdy assodated with the DNA polymerase activity. J Biol Chem 1989; 264(36):21498–21503.

    PubMed  CAS  Google Scholar 

  31. Lewis DL, Farr CL, Wang YX et al. Catalytic subunit of mitochondrial DNA polymerase from Drosophila embryos-Cloning, bacterial overexpression, and biochemical characterization. J Biol Chem 1996; 271(38):23389–23394.

    Article  PubMed  CAS  Google Scholar 

  32. Kiss T, Filipowicz W. Evidence against a mitochondrial location of the 7-2/MRP RNA in mammalian cells. Cell 1992; 70:11–16.

    Article  PubMed  CAS  Google Scholar 

  33. Topper JN, Bennett JL, Clayton DA. A role for RNAase MRP in mitochondrial RNA processing. Cell 1992; 70:16–20.

    Article  PubMed  CAS  Google Scholar 

  34. Li K, Smagula CS, Parsons WJ et al. Subcellular partitioning of MRP RNA assessed by ultrastructural and biochemical analysis. J Cell Biol 1994; 124:871–882.

    Article  PubMed  CAS  Google Scholar 

  35. Lee DY, Clayton DA. RNase mitochondrial RNA processing correctly cleaves a novel R loop at the mitochondrial DNA leading-strand origin of replication. Genes Dev 1997; 11(5):582–592.

    PubMed  CAS  Google Scholar 

  36. Van Dyck E, Foury F, Stillman B et al. A single-stranded DNA binding protein required for mitochondrial DNA replication in S. cerevisiae is homologous to E. coli SSB. EMBO J 1992; 11:3421–3430.

    PubMed  Google Scholar 

  37. Gupta S, Van Tuyle GC. The gene and processed pseudogenes of the rat mitochondrial single-strand DNA-binding protein: Structure and promoter strength analyses. Gene 1998; 212(2):269–278.

    Article  PubMed  CAS  Google Scholar 

  38. Webster G, Genschel J, Curth U et al. A common core for binding single-stranded DNA: Structural comparison of the single-stranded DNA-binding proteins (SSB) from E. coli and human mitochondria. FEBS Lett 1997; 411:313–316.

    Article  PubMed  CAS  Google Scholar 

  39. Spelbrink JN, Li FY, Tiranti V et al. Human mitochondrial DNA deletions associated with mutations in the gene encoding Twinkle, a phage T7 gene 4-like protein localized in mitochondria. Nat Genet 2001; 28(3):223–231.

    Article  PubMed  CAS  Google Scholar 

  40. Montoya J, Gaines GL, Attardi G. The pattern of transcription of the human mitochondrial rRNA genes reveals two overlapping transcription units. Cell 1983; 34(1):151–159.

    Article  PubMed  CAS  Google Scholar 

  41. Yoza BK, Bogenhagen DF. Identification and in vitro capping of a primary transcript of human mitochondrial DNA. J Biol Chem 1984; 259(6):3909–3915.

    PubMed  CAS  Google Scholar 

  42. Fisher RP, Parisi MA, Clayton DA. Flexible recognition of rapidly evolving promoter sequences by mitochondrial transcription factor 1. Genes Dev 1989; 3:2202–2217.

    PubMed  CAS  Google Scholar 

  43. Fisher RP, Lisowsky T, Parisi MA et al. DNA wrapping and bending by a mitochondrial high mobility group-like transcriptional activator protein. J Biol Chem 1992; 267:3358–3367.

    PubMed  CAS  Google Scholar 

  44. Topper JN, Clayton DA. Identification of transcriptional regulatory elements in human mitochondrial DNA by linker substitution analysis. Mol Cell Biol 1989; 9:1200–1211.

    PubMed  CAS  Google Scholar 

  45. Shadel GS, Clayton DA. A Saccharomyces cerevisiae mitochondrial transcription factor, sc-mtTFB, shares features with sigma factors but is functionally distinct. Mol Cell Biol 1995; 15:2101–2108.

    PubMed  CAS  Google Scholar 

  46. Schubot FD, Chen CJ, Rose JP et al. Crystal structure of the transcription factor sc-mtTFB offers insights into mitochondrial transcription. Protein Sci 2001; 10(10):1980–1988.

    Article  PubMed  CAS  Google Scholar 

  47. Shadel GS, Clayton DA. Mitochondrial transcription initiation. Variation and conservation. J Biol Chem 1993; 268:16083–16086.

    PubMed  CAS  Google Scholar 

  48. Bogenhagen DF. Interaction of mtTFB and mtRNA polymerase at core promoters for transcriptionof Xenopus laevis mtDNA. J Biol Chem 1996; 271:12036–12041.

    PubMed  CAS  Google Scholar 

  49. Tiranti V, Savoia A, Forti F et al. Identification of the gene encoding the human mitochondrial RNA polymerase (h-mtRPOL) by cyberscreening of the expressed sequence tags database. Hum Mol Genet 1997; 6(4):615–625.

    Article  PubMed  CAS  Google Scholar 

  50. McCulloch V, Seidel-Rogol BL, Shadel GS. A human mitochondrial transcription factor is related to RNA adenine methyltransferases and binds S-adenosylmethionine. Mol Cell Biol 2002; 22(4):1116–1125.

    Article  PubMed  CAS  Google Scholar 

  51. Falkenberg M, Gaspari M, Rantanen A et al. Mitochondrial transcription factors B1 and B2 activate transcription of human mtDNA. Nat Genet 2002; 31:289–294.

    Article  PubMed  CAS  Google Scholar 

  52. Fisher RP, Clayton DA. A transcription factor required for promoter recognition by human mitochondrial RNA polymerase. Accurate initiation at the heavy-and light-strand promoters dissected and reconstituted in vitro. Journal of Biological Chemistry 1985; 260:11330–11338.

    PubMed  CAS  Google Scholar 

  53. Parisi MA, Clayton DA. Similarity of human mitochondrial transcription factor 1 to high mobility group proteins. Science 1991; 252:965–969.

    Article  PubMed  CAS  Google Scholar 

  54. Diffley JF, Stillman B. A close relative of the nuclear, chromosomal high-mobility group protein HMG1 in yeast mitochondria. Proc Natl Acad Sci USA 1991; 88:7864–7868.

    Article  PubMed  CAS  Google Scholar 

  55. Larsson NG, Wang JM, Wilhelmsson H et al. Mitochondrial transcription factor A is necessary for mtDNA maintenance and embryogenesis in mice. Nat Genet 1998; 18(3):231–236.

    Article  PubMed  CAS  Google Scholar 

  56. Poulton J, Morten K, Freeman-Emmerson C et al. Deficiency of the human mitochondrial transcription factor h-mtTFA in infantile mitochondrial myopathy is associated with mtDNA depletion. Hum Mol Genet 1994; 3:1763–1769.

    Article  PubMed  CAS  Google Scholar 

  57. Schultz RA, Swoap SJ, McDaniel LD et al. Differential expression of mitochondrial DNA replication factors in mammalian tissues. J Biol Chem 1998; 273(6):3447–3451.

    Article  PubMed  CAS  Google Scholar 

  58. Moraes CT. What regulates mitochondrial DNA copy number in animal cells? Trends Genet 2001; 17(4):199–205.

    Article  PubMed  CAS  Google Scholar 

  59. Christianson TW, Clayton DA. In vitro transcription of human mitochondrial DNA: Accurate termination requires a region of DNA sequence that can function bidirectionally. Proc Natl Acad Sci USA 1986; 83(17):6277–6281.

    Article  PubMed  CAS  Google Scholar 

  60. Daga A, Micol V, Hess D et al. Molecular characterization of the transcription termination factor from human mitochondria. J Biol Chem 1993; 268:8123–8130.

    PubMed  CAS  Google Scholar 

  61. Fernandez-Silva P, Martinez-Azorin F, Micol V et al. The human mitochondrial transcription termination factor (mTERF) is a multizipper protein but binds to DNA as a monomer, with evidence pointing to intramolecular leucine zipper interactions. EMBO J 1997; 16(5):1066–1079.

    Article  PubMed  CAS  Google Scholar 

  62. Puranam RS, Attardi G. The RNase P associated with HeLa cell mitochondria contains an essential RNA component identical in sequence to that of the nuclear RNase P. Mol Cell Biol 2001; 21(2):548–561.

    Article  PubMed  CAS  Google Scholar 

  63. Stribinskis V, Gao GJ, Sulo P et al. Yeast mitochondrial RNase P RNA synthesis is altered in an RNase P protein subunit mutant: Insights into the biogenesis of a mitochondrial RNA-processing enzyme. Mol Cell Biol 1996; 16(7):3429–3436.

    PubMed  CAS  Google Scholar 

  64. Wallace DC, Ye J, Singh G et al. Sequence analysis of cDNAs for the human and bovine ATP synthase subunit: Mitochondrial DNA genes sustain seventeen times more mutations. Curr Genet 1987; 12:81–90.

    Article  PubMed  CAS  Google Scholar 

  65. Bogenhagen DF. Repair of mtDNA in vertebrates. Am J Hum Genet 1999; 64(5):1276–1281.

    Article  PubMed  CAS  Google Scholar 

  66. Pinz KG, Bogenhagen DF. Efficient repair of abasic sites in DNA by mitochondrial enzymes. Mol Cell Biol 1998; 18(3):1257–1265.

    PubMed  CAS  Google Scholar 

  67. O’Brien TW, Kalf GF. Ribosomes from rat liver mitochondira. II. Partial characterization. J Biol Chem 1967; 242(9):2180–2185.

    PubMed  CAS  Google Scholar 

  68. O’Brien TW. Evolution of a protein-rich mitochondrial ribosome: Implications for human genetic disease. Gene 2002; 286:73–79.

    Article  PubMed  CAS  Google Scholar 

  69. Ma L, Spremulli LL. Cloning and sequence analysis of the human mitochondrial translational initiation factor 2 cDNA. J Biol Chem 1995; 270:1859–1865.

    Article  PubMed  CAS  Google Scholar 

  70. Ma J, Farwell MA, Burkhart WA et al. Cloning and sequence analysis of the cDNA for bovine mitochondrial translational initiation factor 2. Biochim Biophys Acta 1995; 1261(2):321–324.

    PubMed  Google Scholar 

  71. Xin H, Woriax V, Burkhart W et al. Cloning and expression of mitochondrial translational elongation factor Ts from bovine and human liver. J Biol Chem 1995; 270:17243–17249.

    Article  PubMed  CAS  Google Scholar 

  72. Barker C, Makris A, Patriotis C et al. Identification of the gene encoding the mitochondrial elongation factor G in mammals. Nucleic Acids Res 1993; 21:2641–2647.

    Article  PubMed  CAS  Google Scholar 

  73. Attardi G, Schatz G. Biogenesis of mitochondria. Annu Rev Cell Biol 1988; 4:289–333.

    Article  PubMed  CAS  Google Scholar 

  74. Scarpulla RC. Nuclear control of respiratory chain expression in mammalian cells. J Bioenerg Biomembr 1997; 29(2):109–119.

    Article  PubMed  CAS  Google Scholar 

  75. Zitomer RS, Lowry CV. Regulation of gene expression by oxygen in Saccharomyces cerevisiae. Microbiol Rev 1992; 56:1–11.

    PubMed  CAS  Google Scholar 

  76. Gopalakrishnan L, Scarpulla RC. Differential regulation of respiratory chain subunits by a CREB-dependent signal transduction pathway. Role of cyclic AMP in cytochrome c and COXIV gene expression. J Biol Chem 1994; 269:105–113.

    PubMed  CAS  Google Scholar 

  77. Williams RS, Garcia-Moll M, Mellor J et al. Adaptation of Skeletal Muscle to Increased Contractile Activity. J Biol Chem 1987; 262:2764–2767.

    PubMed  CAS  Google Scholar 

  78. Piko L, Matsumoto L. Number of mitochondria and some properties of mitochondrial DNA in the mouse egg. Dev Biol 1976; 49:1–10.

    Article  PubMed  CAS  Google Scholar 

  79. Luis AM, Isquierdo JM, Ostronoff LK et al. Translational regulation of mitochondrial differentiation in neonatal rat liver. J Biol Chem 1993; 268:1868–1875.

    PubMed  CAS  Google Scholar 

  80. Scarpulla RC. Nuclear respiratory factors and the pathways of nuclear-mitochondrial interaction. Trends Cardiovasc Med 1996; 6:39–45.

    Article  CAS  Google Scholar 

  81. Gugneja S, Scarpulla RC. Serine phosphorylation within a concise amino-terminal domain in nuclear respiratory factor 1 enhances DNA binding. J Biol Chem 1997; 272(30):18732–18739.

    Article  PubMed  CAS  Google Scholar 

  82. Herzig RP, Scacco S, Scarpulla RC. Sequential serum-dependent activation of CREB and NRF-1 leads to enhanced mitochondrial respiration through the induction of cytochrome c. J Biol Chem 2000; 275(17):13134–13141.

    Article  PubMed  CAS  Google Scholar 

  83. Huo L, Scarpulla RC. Mitochondrial DNA instability and peri-implantation lethality associated with targeted disruption of nuclear respiratory factor 1 in mice. Mol Cell Biol 2001; 21(2):644–654.

    Article  PubMed  CAS  Google Scholar 

  84. Virbasius JV, Virbasius CA, Scarpulla RC. Identity of GABP with NRF-2, a multisubunit activator of cytochrome oxidase expression, reveals a cellular role for an ETS domain activator of viral promoters. Genes Dev 1993; 7:380–392.

    PubMed  CAS  Google Scholar 

  85. Gugneja S, Virbasius JV, Scarpulla RC. Four structurally distinct, nonDNA-binding subunits of human nuclear respiratory factor 2 share a conserved transcriptional activation domain. Mol Cell Biol 1995; 15:102–111.

    PubMed  CAS  Google Scholar 

  86. Scarpulla RC. Transcriptional activators and coactivators in the nuclear control of mitochondrial function in mammalian cells. Gene 2002; 286(1):81–89.

    Article  PubMed  CAS  Google Scholar 

  87. Gulick T, Cresci S, Caira T et al. The peroxisome proliferator-activated receptor regulates mitochondrial fatty acid oxidative enzyme gene expression. Proc Natl Acad Sci USA 1994; 91:11012–11016.

    Article  PubMed  CAS  Google Scholar 

  88. Wu Z, Puigserver P, Andersson U et al. Mechanisms controlling mitochondrial biogenesis and function through the thermogenic coactivator PGC-1. Cell 1999; 98:115–124.

    Article  PubMed  CAS  Google Scholar 

  89. Vega RB, Huss JM, Kelly DP. The coactivator PGC-1 cooperates with peroxisome proliferator-activated receptor a in transcriptional control of nuclear genes encoding mitochondrial fatty acid oxidation enzymes. Mol Cell Biol 2000; 20(5):1868–1876.

    Article  PubMed  CAS  Google Scholar 

  90. Andersson U, Scarpulla RC. PGC-1-related coactivator, a novel, serum-inducible coactivator of nuclear respiratory factor 1-dependent transcription in mammalian cells. Mol Cell Biol 2001; 21(11):3738–3749.

    Article  PubMed  CAS  Google Scholar 

  91. Lin J, Puigserver P, Donovan J et al. PGC-1β: A novel PGC-1-related transcription coactivator associated with host cell factor. J Biol Chem 2002; 277(3):1645–1648.

    Article  PubMed  CAS  Google Scholar 

  92. Yoon JC, Puigserver P, Chen GX et al. Control of hepatic gluconeogenesis through the transcriptional coactivator PGC-1. Nature 2001; 413(6852):131–138.

    Article  PubMed  CAS  Google Scholar 

  93. Shyjan AW, Butow RA. Intracellular dialogue. Curr Biol 1993; 3(6):398–400.

    Article  PubMed  CAS  Google Scholar 

  94. Rothermel BA, Thornton JL, Butow RA. Rtg3p, a basic helix-loop-helix/leucine zipper protein that functions in mitochondrial-induced changes in gene expression, contains independent activation domains. J Biol Chem 1997; 272(32):19801–19807.

    Article  PubMed  CAS  Google Scholar 

  95. Moraes CT, Ricci E, Bonilla E et al. The mitochondrial tRNALeu(UUR) mutation in mitochondrial encephalomyopathy, lactic acidosis, and strokelike episodes (MELAS): Genetic, biochemical, and morphological correlations in skeletal muscle. Am J Hum Genet 1992; 50:934–949.

    PubMed  CAS  Google Scholar 

  96. Heddi A, Lestienne P, Wallace DC et al. Mitochondrial DNA expression in mitochondrial myopathies and coordinated expression of nuclear genes involved in ATP production. J Biol Chem 1993; 268:12156–12163.

    PubMed  CAS  Google Scholar 

  97. Li K, Neufer PD, Williams RS. Nuclear responses to depletion of mitochondrial DNA in human cells. Am J Physiol Cell Physiol 1995; 269:C1265–C1270.

    CAS  Google Scholar 

  98. Wang H, Morais R. Up-regulation of nuclear genes in response to inhibition of mitochondrial DNA expression in chicken cells. Biochim Biophys Acta Gene Struct Expression 1997; 1352(3):325–334.

    Article  CAS  Google Scholar 

  99. Biswas G, Adebanjo OA, Freedman BD et al. Retrograde Ca2+ signaling in C2C12 skeletal myocytes in response to mitochondrial genetic and metabolic stress: A novel mode of inter-organelle crosstalk. EMBO J 1999; 18(3):522–533.

    Article  PubMed  CAS  Google Scholar 

  100. Wu H, Kanatous SB, Thurmond FA et al. Regulation of mitochondrial biogenesis in skeletal muscle by CaMK. Science 2002; 296(5566):349–352.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2004 Eurekah.com and Kluwer Academic / Plenum Publishers

About this chapter

Cite this chapter

Scarpulla, R.C. (2004). Molecular Biology of the OXPHOS System. In: Oxidative Phosphorylation in Health and Disease. Medical Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26992-4_2

Download citation

  • DOI: https://doi.org/10.1007/0-387-26992-4_2

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-306-48232-8

  • Online ISBN: 978-0-387-26992-4

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics