Skip to main content

The Role of Proteins and Lipids in Organelle Biogenesis in the Secretory Pathway

  • Chapter
The Biogenesis of Cellular Organelles

Part of the book series: Molecular Biology Intelligence Unit ((MBIU))

  • 1167 Accesses

Abstract

Membrane compartments in the secretory pathway retain their identity in spite of continuous membrane and protein flux through each compartment. A challenge in cell biology is to discover how compartment identity is established and maintained. A related issue is how protein and membrane cargo is sorted from resident molecules in a donor compartment and vectorially delivered to an acceptor compartment without compromise to the integrity of individual compartments. We review accumulating evidence indicating that compartmental identity is conferred combinatorially by members of key protein families (Rabs, ARFs, SNAREs) and lipid constituents (phosphoinositides). These molecules and their effectors participate in assembling exit sites in donor compartments that sort and package cargo, and entry sites in recipient compartments that mediate cargo entry without intermixing compartment constituents.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Palade G. Intracellular aspects of the process of protein synthesis. Science 1975; 189:347–358.

    PubMed  CAS  Google Scholar 

  2. Lippincott-Schwartz J, Roberts TH, Hirschberg K. Secretory protein trafficking and organelle dynamics in living cells. Annu Rev Cell Dev Biol 2000; 16:557–589.

    PubMed  CAS  Google Scholar 

  3. Hirschberg K, Miller CM, Ellenberg J et al. Kinetic analysis of secretory protein traffic and characterization of Golgi to plasma membrane transport intermediates in living cells. J Cell Biol 1998; 143:1485–1503.

    PubMed  CAS  Google Scholar 

  4. Scaiky N, Presley J, Smith C et al. Golgi tubule traffic and the effects of brefeldin A visualized in living cells. J Cell Biol 1997; 139:1137–1155.

    Google Scholar 

  5. Rothman JE, Wieland FT. Protein sorting by transport vesicles. Science 1996; 272:227–234.

    PubMed  CAS  Google Scholar 

  6. Warren G, Malhotra V. The organization of the Golgi apparatus. Curr Opin Cell Biol 1998; 10:493–498.

    PubMed  CAS  Google Scholar 

  7. Jamieson JD. The Golgi complex: Perspectives and prospectives. Biochim Biophys Acta 1998; 1404:3–7.

    PubMed  CAS  Google Scholar 

  8. Pelham HRB. Getting through the Golgi complex. Trends Cell Biol 1998; 8:45–49.

    PubMed  CAS  Google Scholar 

  9. Glick BS. Organization of the Golgi apparatus. Curr Opin Cell Biol 2000; 12:450–456.

    PubMed  CAS  Google Scholar 

  10. Bock JB, Matern HT, Peden AA et al. A genomic perspective on membrane compartment organization. Nature 2001; 409:839–841.

    PubMed  CAS  Google Scholar 

  11. Pelham HRB. SNAREs and the specificity of membrane fusion. Trends Cell Biol 2001; 11:99–101.

    PubMed  CAS  Google Scholar 

  12. Scales SJ, Bock JB, Scheller RH. The specifics of membrane fusion. Nature 2000; 407:144–146.

    PubMed  CAS  Google Scholar 

  13. Novick P, Zerial M. The diversity of Rab proteins in vesicle transport. Curr Opin Cell Biol 1997; 9:496–504.

    PubMed  CAS  Google Scholar 

  14. Takai Y, Sasaki T, Matozaki T. Small GTP-binding proteins. Physiological Reviews 2001; 81:153–208.

    PubMed  CAS  Google Scholar 

  15. Zerial M, McBride H. Rab proteins as membrane organizers. Nature Rev Cell Mol Biol 2001; 2:107–119.

    CAS  Google Scholar 

  16. Guo W, Sacher M, Barrowman J et al. Protein complexes in transport vesicle targeting. Trends Cell Biol 2000; 10:251–255.

    PubMed  CAS  Google Scholar 

  17. Pfeffer SR. Rab GTPases: Specifying and deciphering organelle identity and function. Trends Cell Biol 2001; 11:487–491.

    PubMed  CAS  Google Scholar 

  18. Jahn R, Sudhof TC. Membrane fusion and exocytosis. Annu Rev Biochem 1999; 68:863–911.

    PubMed  CAS  Google Scholar 

  19. Chen YA, Scheller RH. SNAREmediated membrane fusion. Nature Rev Cell Mol Biol 2001; 2:98–106.

    CAS  Google Scholar 

  20. McNew JA, Parlati F, Fukuda R et al. Compartmental specificity of cellular membrane fusion encoded in SNARE proteins. Nature 2000; 407:153–159.

    PubMed  CAS  Google Scholar 

  21. Fasshauer D, Sutton RB, Brunger AT et al. Conserved structural features of the synaptic fusion complex: SNARE proteins reclassified as Q-and R-SNAREs. Proc Natl Acad Sci USA 1998; 95:15781–15786.

    PubMed  CAS  Google Scholar 

  22. Sutton RB, Fasshauer D, Jahn R et al. Crystal structure of a SNARE complex involved in synaptic exocytosis at 2.4 angstrom resolution. Nature 1998; 395:347–353.

    PubMed  CAS  Google Scholar 

  23. Parlati F, McNew JA, Fukuda R et al. Topological restriction of SNAREdependent membrane fiision. Nature 2000; 407:194–198.

    PubMed  CAS  Google Scholar 

  24. Scales SJ, Chen YA, Yoo BY et al. SNAREs contribute to the specificity of membrane fusion. Neuron 2000; 26:457–464.

    PubMed  CAS  Google Scholar 

  25. Martin TFJ. Phosphoinositide lipids as signaling molecules: Common themes for signal transduction, cytoskeletal regulation and membrane trafficking. Annu Rev Dev Biol 1998; 14:231–264.

    CAS  Google Scholar 

  26. Odorizzi G, Babst M, Emr SD. Phosphoinositide signaling and the regulation of membrane trafficking in yeast. Trends Biochem Sci 2000; 25:229–235.

    PubMed  CAS  Google Scholar 

  27. Simonsen A, Wurmser AE, Emr SD et al. The role of phosphoinositides in membrane transport. Curr Opin Cell Biol 2001; 13:485–492.

    PubMed  CAS  Google Scholar 

  28. Cremona O, DeCamilli P. Phosphoinositides in membrane traffic at the synapse. J Cell Sci 2001; 114:1041–1052.

    PubMed  CAS  Google Scholar 

  29. Martin TFJ. PI(4,5)P2 regulation of surface membrane traffic. Curr Opin Cell Biol 2001; 13:493–499.

    PubMed  CAS  Google Scholar 

  30. Balk T, Bondeva T, Varnai P. How accurately can we image inositol lipids in living cells? Trends Pharmacol. Sci 2000; 21:238–241.

    Google Scholar 

  31. Watt SA, Kular G, Fleming IN et al. Subcellular localization of phosphatidylinositol 4,5-bisphosphate using the pleckstrin homology domain of phospholipase C d1. Biochem J 2002; 363:657–666.

    PubMed  CAS  Google Scholar 

  32. Brown FD, Rozelle AL, Yin HL et al. Phosphatidylinositol 4,5-bisphosphate and ARF6-regulated membrane traffic. J Cell Biol 2001; 154:1007–1017.

    PubMed  CAS  Google Scholar 

  33. Gillooly DJ, Morrow IC, Lindsay M et al. Localization of phosphatidylinositol 3-phosphate in yeast and mammalian cells. EMBO J 2000; 19:4577–4588.

    PubMed  CAS  Google Scholar 

  34. Levine TP, Munro S. Targeting of Golgi-specific pleckstrin homology domains involves both PI 4-kinase-dependent and-independent components. Curr Biol 2002; 12:695–704.

    PubMed  CAS  Google Scholar 

  35. Gillooly DJ, Simonsen A, Stenmark H. Cellular functions of phosphatidylinositol 3-phosphate and FYVE domain proteins. Biochem J 2001; 355:249–258.

    PubMed  CAS  Google Scholar 

  36. Stenmark H, Aasland R, Driscoll PC. The phosphatidylinositol 3-phosphate binding FYVE finger. FEBS Lett 2002; 513:77–84.

    PubMed  CAS  Google Scholar 

  37. DeCamilli P, Chen H, Hyman J et al. The ENTH domain. FEBS Lett 2002; 513:11–18.

    CAS  Google Scholar 

  38. Sato TK, Overduin M, Emr SD. Location, location, location: Membrane targeting directed by PX domains. Science 2001; 294:1881–1885.

    PubMed  CAS  Google Scholar 

  39. Blomberg N, Baraldi E, Nilges M et al. The PH superfold: A structural scaffold for multiple functions. Trends Biochem Sci 1999; 24:441–445.

    PubMed  CAS  Google Scholar 

  40. Lemmon MA, Ferguson KM. Signal-dependent membrane targeting by pleckstrin homology (PH) domains. Biochem J 2000; 350:1–18.

    PubMed  CAS  Google Scholar 

  41. Donaldson JG, Jackson CL. Regulators and effectors of the ARF GTPases. Curr Opin Cell Biol 2000; 12:475–482.

    PubMed  CAS  Google Scholar 

  42. Roth MG. Lipid regulators of membrane traffic through the Golgi complex. Trends Cell Biol 1999; 9:174–179.

    PubMed  CAS  Google Scholar 

  43. Jackson CL, Casanova JE. Turning on ARF: The sec7 family of guanine nucleotide exchange factors. Trends Cell Biol 2000; 10:60–66.

    PubMed  CAS  Google Scholar 

  44. Randazzo PA, Nie Z, Miura K et al. Molecular aspects of the cellular activities of ADP-ribosylation factors. Science 2000; STKE.

    Google Scholar 

  45. Zhao X, Lasell TKR, Melancon P. Localization of large ADP-ribosylation factor-guanine nucleotide exchange factors to different Golgi compartments: Evidence for distinct functions in protein traffic. Mol Biol Cell 2002; 13:119–133.

    PubMed  CAS  Google Scholar 

  46. Honda A, Nogami M, Yokozeki T et al. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6 in membrane ruffle formation Cell 1999; 99:521–532.

    PubMed  CAS  Google Scholar 

  47. Godi A, Pertile P, Meyers R et al. ARF mediates recruitment of PI 4-kinaseb and stimulates synthesis of PI(4,5)P2 on the Golgi complex. Nature Cell Biol 1999; 1:280–287.

    PubMed  CAS  Google Scholar 

  48. Jones DH, Morris JB, Morgan CP et al. Type I phosphatidylinositol 4-phosphate 5-kinase directly interacts with ADP-ribosylation factor 1 and is responsible foro phosphatidylinositol 4,5-bisphosphate in the Golgi compartment. J Biol Chem 2000; 275:13963–13966.

    Google Scholar 

  49. Robinson MS, Bonifacino JS. Adaptor-related proteins. Curr Opin Cell Biol 2001; 13:444–453.

    PubMed  CAS  Google Scholar 

  50. Zhao L, Helms JB, Brugger B et al. Direct and GTP-dependent interaction of ADP ribosylation factor 1 with coatomer subunit beta. Proc Natl Acad Sci USA 1997; 94:4418–4423.

    PubMed  CAS  Google Scholar 

  51. Austin C, Hinners I, Tooze SA. Direct and GTP-dependent interaction of ADP-ribosylation factor 1 with clathrin adaptor protein AP-1 on immature secretory granules. J Biol Chem 2000; 275:21862–21869.

    PubMed  CAS  Google Scholar 

  52. Boehm M, Aguilar RC, Bonifacino JS. Functional and physical interactions of the adaptor protein complex AP-4 with ADP-ribosylation factors (ARFs). EMBO J 2001; 20:6265–6276.

    PubMed  CAS  Google Scholar 

  53. Puertollano R, Randazzo PA, Presley JF et al. The GGAs promote ARF-dependent recruitment of clathrin to the TGN. Cell 2001; 105:93–102.

    PubMed  CAS  Google Scholar 

  54. Kirchhausen T Adaptors for clathrin-mediated traffic. Annu Rev Cell Dev Biol 1999; 15:705–532.

    PubMed  CAS  Google Scholar 

  55. Moyer BD, Allan BB, Balch WE. Rabl interaction with a GM130 effector complex regulates COPII vesicle Golgi tethering. Traffic 2001; 2:268–276.

    PubMed  CAS  Google Scholar 

  56. Weide T, Bayer M, Koster M et al. The Golgi matrix protein GM130: A specific interaction partner of the small GTPase Rablb. EMBO Rep 2001; 2:336–341.

    PubMed  CAS  Google Scholar 

  57. Allan BB, Moyer BD, Balch WE. Rab1 recruitment of p115 into a cis-SNARE complex: Programming budding COPII vesicles for fusion. Science 2000; 289:444–448.

    PubMed  CAS  Google Scholar 

  58. Shorter J, Beard MB, Seemann J et al. Sequential tethering of Golgins and catalysis of SNAREpin assembly by the vesicle-tethering protein p115. J Cell Biol 2002; 157:45–62.

    PubMed  CAS  Google Scholar 

  59. Short B, Preisinger C, Korner R et al. A GRASP55-rab2 effector complex linking Golgi structure to membrane traffic. J Biol Chem 2001; 155:877–883.

    CAS  Google Scholar 

  60. Wickner W. Yeast vacuoles and membrane fusion pathways. EMBO J 2002; 21:1241–1247.

    PubMed  CAS  Google Scholar 

  61. Mayer A. What drives membrane fusion in eukaryotes? Trends Biochem. Sci 2001; 26:717–723.

    PubMed  CAS  Google Scholar 

  62. Schmid SL. Clathrin-coated vesicle formation and protein sorting: An integrated process. Annu Rev Biochem 1997; 66:511–548.

    PubMed  CAS  Google Scholar 

  63. Ford MGJ, Pearse BMF, Higgins MK et al. Simultaneous binding of PtdIns(4,5)P2 and clathrin by AP180 in the nucleation of clathrin lattices on membranes. Science 2001; 291:1051–1055.

    PubMed  CAS  Google Scholar 

  64. Jost M, Simpson F, Kavran JM et al. Phosphatidylinositol 4,5-bisphosphate is required for endocytic coated vesicle formation. Curr Biol 1998; 8:1399–1402.

    PubMed  CAS  Google Scholar 

  65. Kinuta M, Yamada H, Abe T et al. Phosphatidylinositol 4,5-bisphosphate stimulates vesicle formation from liposomes by brain cytosol. Proc Natl Acad Sci USA 2002; 99:2842–2847.

    PubMed  CAS  Google Scholar 

  66. Cremona O, DiPaolo G, Wenk MR et al. Essential role of phosphoinositide metabolism in synaptic vesicle recycling. Cell 1999; 99:179–188.

    PubMed  CAS  Google Scholar 

  67. Wenk MR, Pellegrini L, Klenchin VA et al. PIP kinase Ig is the major PI(4,5)P2 synthesizing enzyme at the synapse. Neuron 2001; 32:79–88.

    PubMed  CAS  Google Scholar 

  68. Altshuler Y, Liu S, Katz L et al. ADP ribosylation factor 6 and endocytosis at the apical surface of Madin-Darby canine kidney cells. J Cell Biol 1999; 147:7–12.

    Google Scholar 

  69. Claing A, Chen W, Miller WE et al. b-arrestin-mediated ADP-ribosylation factor 6 activation and b-adrenergic receptor endocytosis. J Biol Chem 2001; 276:42509–42513.

    PubMed  CAS  Google Scholar 

  70. Perry SJ, Lefkowitz RJ. Arresting developments in heptahelical receptor signaling and regulation. Trends Cell Biol 2002; 12:130–138.

    PubMed  CAS  Google Scholar 

  71. Vitale N, Patton WA, Moss J et al. GIT proteins, a novel family of phosphatidylinositol 3,4,5-trisphosphate-stimulated GTPase-activating proteins for ARF6. J Biol Chem 2000; 275:13901–13906.

    PubMed  CAS  Google Scholar 

  72. Kuai J, Boman AL, Arnold RS et al. Effects of activated ADP-ribosylation factors on Golgi morphology require neither activation of phospholipase D1 nor recruitment of coatomer. J Biol Chem 2000; 275:4022–4032.

    PubMed  CAS  Google Scholar 

  73. Boman AL. GGA proteins: New players in the sorting game. J Cell Science 2001; 114:3413–3418.

    PubMed  CAS  Google Scholar 

  74. Huijbregts RPH, Topalof L, Bankaitis VA. Lipid metabolism and regulation of membrane trafficking. Traffic 2000; 1:195–202.

    PubMed  CAS  Google Scholar 

  75. Hama H, Schnieders EA, Thorner J et al. Direct involvement of phosphatidylinositol 4-phosphate in secretion in the yeast Saccharomyces cerevisiae. J Biol Chem 1999; 274:34294–34300.

    PubMed  CAS  Google Scholar 

  76. Foti M, Audhya A, Emr SD. Sac1 lipid phosphatase and Stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol Biol Cell 2001; 12:2396–2411.

    PubMed  CAS  Google Scholar 

  77. Guo S, Stolz LE, Lemrow SM et al. Sac1-like domains of yeast SAC1, INP52 and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J Biol Chem 1999; 274:12990–12995.

    PubMed  CAS  Google Scholar 

  78. Walch-Solimena C, Novick P. The yeast phosphatidylinositol 4-kinase Pik1 regulates secretion at the Golgi. Nature Cell Biol 1999; 1:523–525.

    PubMed  CAS  Google Scholar 

  79. Audhya A, Foti M, Emr SD. Distinct roles for the yeast phosphatidylinositol 4-kinases, Stt4p and Pik1p, in secretion, cell growth and organelle membrane dynamics. Mol Biol Cell 2000; 11:2673–2689.

    PubMed  CAS  Google Scholar 

  80. Hendricks KB, Wang BQ, Schnieders EA et al. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol 4-kinase. Nature Cell Biol 1999; 138:234–241.

    Google Scholar 

  81. Li X, Rivas MP, Fang M et al. Analysis of oxysterol binding protein homologue Kes1p function in regulation of Sec14p-dependent protein transport from the yeast Golgi complex. J Cell Biol 2002; 157:63–77.

    PubMed  CAS  Google Scholar 

  82. Donaldson JG, Klausner R. ARF: A key regulatory switch in membrane traffic and organelle structure. Curr Opin Cell Biol 1994; 6:527–531.

    PubMed  CAS  Google Scholar 

  83. Siddhanta A, Backer JM, Shields D. Inhibition of phosphatidic acid synthesis alters the structure of the Golgi apparatus and inhibits secretion in endocrine cells. J Biol Chem 2000; 275:12023–12031.

    PubMed  CAS  Google Scholar 

  84. Sweeney DA, Siddhanta A, Shields D. Fragmentation and reassembly of the Golgi apparatus in vitro. J Biol Chem 2002; 277:3030–3039.

    PubMed  CAS  Google Scholar 

  85. DeMatteis MA, Morrow JS. The role of ankyrin and spectrin in membrane transport and domain formation. Curr Opin Cell Biol 1998; 10:542–549.

    CAS  Google Scholar 

  86. Godi A, Santone I, Pertile P et al. ADP ribosylation factor regulates spectrin binding to the Golgi complex. Proc Natl Acad Sci USA 1998; 95:8607–8612.

    PubMed  CAS  Google Scholar 

  87. Fucini RV, Navarrete A, Vadakkan C et al. Activated ADP-ribosylation factor assembles distinct pools of actin on Golgi membranes. J Biol Chem 2000; 275:1882–18829.

    Google Scholar 

  88. Holleran EA, Holzbauer EL. Speculating about spectrin: New insights into the Golgi-associated cytoskeleton. Trends Cell Biol 1998; 8:26–29.

    PubMed  CAS  Google Scholar 

  89. Stow JL, Heimann K. Vesicle budding on Golgi membranes: Regulation by G proteins and myosin motors. Biochim Biophys Acta 1998; 1404:161–171.

    PubMed  CAS  Google Scholar 

  90. Nichols BJ, Lippincott-Schwartz J. Endocytosis without clathrin coats. Trends Cell Biol 2001; 11:406–412.

    PubMed  CAS  Google Scholar 

  91. Schafer DA, D’Souza-Schorey C, Cooper JA. Actin assembly at membranes controlled by ARF6. Traffic 2000; 1:892–903.

    PubMed  CAS  Google Scholar 

  92. Boman AL, Zhang C, Zhu X et al. A family of ADP-ribosylatiori factor effectors that can alter membrane transport through the trans Golgi. Mol Biol Cell 2000; 11:1241–1255.

    PubMed  CAS  Google Scholar 

  93. Dell’Angelica EC, Puertollano R, Mullins C et al. GGAs: A family of ADP-ribosylation factor-binding proteins related to adaptors and associated with the Golgi complex. J Cell Biol 2000; 149:81–94.

    PubMed  CAS  Google Scholar 

  94. Hirst J, Lui W, Bright NA et al. A family of proteins with g-adaptin and VHS domains that facilitate trafficking between the trans-Golgi network and the vacuole/lysosome. J Cell Biol 2000; 149:67–80.

    PubMed  CAS  Google Scholar 

  95. Misra S, Beach BM, Hurley JH. Structure of the VHS domain of human TomI: Insights into interactions with proteins and membranes. Biochemistry 2000; 39:11282–11290.

    PubMed  CAS  Google Scholar 

  96. Shiba T, Takatsu H, Nogi T et al. Structural basis for recognition of acidic cluster dileucine sequence by GGA1. Nature 2002; 415:937–941.

    PubMed  CAS  Google Scholar 

  97. Itoh T, Koshiba S, Kigawa T et al. Role of the ENTH domain in phosphatidylinositol 4,5-bisphosphate binding and endocytosis. Science 2001; 291:1047–1051.

    PubMed  CAS  Google Scholar 

  98. Stefan CJ, Audhya A, Emr SD. The yeast synaptojanin-like proteins control the cellular distribution of phosphatidylinositol 4,5-bisphosphate. Mol Biol Cell 2002; 13:542–557.

    PubMed  CAS  Google Scholar 

  99. Dulubova I, Sugita S, Hill S et al. A conformational switch in syntaxin during exocytosis: Role of munc18. EMBO J 1999; 18:4372–4382.

    PubMed  CAS  Google Scholar 

  100. Yang B, Steegmaier M, Gonzalez LC et al. nSec1 binds a closed conformation of syntaxin1A. J Cell Biol 2000; 148:247–252.

    PubMed  CAS  Google Scholar 

  101. Voets T, Toonen RF, Brian EC et al. Munc18-1 promotes large dense-core vesicle docking. Neuron 2001; 31:581–591.

    PubMed  CAS  Google Scholar 

  102. Nielsen E, Christoforidis S, Uttenweiler-Joseph S et al. Rabenosyn-5, a novel Rab5 effector, is complexed with hVPS45 and recruited to endosomes through a FYVE finger domain. J Cell Biol 2000; 151:601–612.

    PubMed  CAS  Google Scholar 

  103. Geppert M, Bolshakov VY, Siegelbaum SA et al. The role of Rab3A in neurotransmitter release. Nature 1994; 369:493–497.

    PubMed  CAS  Google Scholar 

  104. Nonet ML, Staunton JE, Kilgard MP et al. Caehorhabditis elegans rab-3 mutant synapses exhibit impaired function and are partially depleted of vesicles. J Neurosci 1997; 17:8061–8073.

    PubMed  CAS  Google Scholar 

  105. Martelli AM, Baldini G, Tabellini G et al. Rab3A and Rab3D control the total granule number and the fraction of granules docked at the plasma membrane in PC 12 cells. Traffic 2000; 1:976–986.

    PubMed  CAS  Google Scholar 

  106. Ostermeier C, Brunger AT. Structural basis of rab effector specificity: Crystal structure of the small G protein rab3A complexed with the effector domain of rabphilin-3A. Cell 1999; 96:363–374.

    PubMed  CAS  Google Scholar 

  107. Chung SH, Song WJ, Kim K et al. The C2 domains of Rabphilin3A specifically bind phosphatidylinositol 4,5-bisphosphate containing vesicles in a Ca2+-dependent manner. J Biol Chem 1998; 273:10240–10248.

    PubMed  CAS  Google Scholar 

  108. Hay JC, Fisette PL, Jenkins GH et al. ATP-dependent inositide phosphorylation required for Ca2+-activated secretion. Nature 1995; 374:173–177.

    PubMed  CAS  Google Scholar 

  109. Schluter OM, Schnell E, Verhage M et al. Rabphilin knock-out mice reveal that rabphilin is not required for Rab3 function in regulating neurotransmitter release. J Neurosci 1999; 19:5834–5846.

    PubMed  CAS  Google Scholar 

  110. Coppola T, Frantz C, Perret-Menoud V et al. Pancreatic b-cell protein granulophilin binds Rab3 and Munc18 and controls exocytosis. Mol Biol Cell 2002; 13:1906–1915.

    PubMed  CAS  Google Scholar 

  111. Staunton J, Ganetzky B, Nonet ML. Rabphilin potentiates soluble N-ethylmaleimide sensitive factor attachment protein receptor function independently of rab3. J Neurosci 2001; 21:9255–9264.

    PubMed  CAS  Google Scholar 

  112. Wang Y, Okamoto M, Schmitz F et al. Rim is a putative rab3 effector in regulating synaptic vesicle fusion. Nature 1997; 388:593–598.

    PubMed  CAS  Google Scholar 

  113. Coppola T, Magnin-Luthi S, Perret-Menoud V et al. Direct interaction of the Rab3 effector RIM with Ca2+ channels, SNAP-25 and synaptotagmin. J Biol Chem 2001; 276:32756–32762.

    PubMed  CAS  Google Scholar 

  114. Schoch S, Castillo PE, Jo T et al. Rim 1a forms a protein scaffold for regulating neurotransmitter release at the active zone. Nature 2002; 415:321–326.

    PubMed  CAS  Google Scholar 

  115. Brose N, Rosenmund C, Rettig J. Regulation of transmitter release by Unc-13 and its homologues. Curr Opin Neurobiol 2000; 10:303–311.

    PubMed  CAS  Google Scholar 

  116. Rosenmund C, Sigler A, Augustin I et al. Differential control of vesicle priming and short-term plasticity by Munc13 isoforms. Neuron 2002; 33:411–424.

    PubMed  CAS  Google Scholar 

  117. Christoforidis S, McBride HM, Burgoyne RD et al. The Rab effector EEA1 is a core component of endosome docking. Natare 1999; 397:621–625.

    CAS  Google Scholar 

  118. Stenmark H, Aasland R, Toh BH et al. Endosomal localization of the autoantigen EEA1 is mediated by a zinc-binding FYVE finger. J Biol Chem 1996; 271:24048–24054.

    PubMed  CAS  Google Scholar 

  119. Christoforidis S, Miaczynska M, Ashman K et al. Phosphatidylinositol 3-kinases are Rab5 effectors. Nature Cell Biol 1999; 1:249–252.

    PubMed  CAS  Google Scholar 

  120. McBride HM, Rybin V, Murphy C et al. Oligomeric complexes link Rab5 effectors with NSF and drive membrane fusion via interactions between EEA1 and syntaxin 13. Cell 1999; 98:377–386.

    PubMed  CAS  Google Scholar 

  121. Peterson MR, Burd CG, Emr SD. Vaclp coordinates Rab and phosphatidylinositol 3-kinase signaling in Vps45p-dependent vesicle docking/fusion at the endosome. Curr Biol 1999; 9:159–162.

    PubMed  CAS  Google Scholar 

  122. Sonnichsen B, DeRenzis S, Nielsen E et al. Distinct membrane domains on endosomes in the recycling pathway visualized by multicolor imaging of Rab4, Rab5 and Rab11. J Cell Biol 2000; 149:901–914.

    PubMed  CAS  Google Scholar 

  123. DeRenzis S, Sonnichsen B, Zerial M. Divalent Rab effectors regulate the sub-compartmental organization and sorting of early endosomes. Nature Cell Biol 2002; 4:124–133.

    CAS  Google Scholar 

  124. Cormont M, Mari M, Galmiche A et al. A FYVE finger-containing protein, Rabip4, is a Rab4 effector involved in early endosomal traffic. Proc Natl Acad Sci USA 2001; 98:1637–1642.

    PubMed  CAS  Google Scholar 

  125. Ohya T, Sasaki T, Kato M et al. Involvement of Rabphilin3 in endocytosis through interaction with Rabaptin5. J Biol Chem 1998; 273:613–617.

    PubMed  CAS  Google Scholar 

  126. Gary JD, Wurmser AE, Bonangelino CJ et al. Fab1p is essential for PI(3)P 5-kinase activity and the maintenance of vacuolar size and membrane homeostasis. J Cell Biol 1998; 143:65–79.

    PubMed  CAS  Google Scholar 

  127. Cooke FT, Dove SK, McEwen RK et al. The stress-activated phosphatidylinositol 3-phosphate 5-kinase Fab1p is essential for vacuole function in S. cerevisiae. Curr Biol 1998; 8:1219–1222.

    PubMed  CAS  Google Scholar 

  128. Sbrissa D, Ikonomov OC, Shisheva A. PIKfyve, a mammalian ortholog of yeast Fab1p lipid kinase, synthesizes 5-phosphoinositides. J Biol Chem 1999; 274:21589–21597.

    PubMed  CAS  Google Scholar 

  129. Ikonomov OC, Sbrissa D, Shisheva A. Mammalian cell morphology and endocytic membrane homeostasis require enzymatically active phosphoinositide 5-kinase PIKfyve. J Biol Chem 2001; 276:26141–26147.

    PubMed  CAS  Google Scholar 

  130. Lohi O, Poussu A, Mao Y et al. VHS domain-a longshoreman of vesicle lines. FEBS Lett 2002; 513:19–23.

    PubMed  CAS  Google Scholar 

  131. Xu Y, Seet L-F, Hong W. The Phox homology (PX) domain, a new player in phosphoinositide signaling. Biochem J 2001; 360:513–530.

    PubMed  CAS  Google Scholar 

  132. Simonsen A, Stenmark H. PX domains: Attracted by phosphoinositides. Nature Cell Biol 2001; 3:E179–E182.

    PubMed  CAS  Google Scholar 

  133. Rebecchi MJ, Scarlata S. Pleckstrin homology domains: A common fold with diverse functions. Annu Rev Biophys Biomol Struct 1998; 27:503–528.

    PubMed  CAS  Google Scholar 

  134. Rizo J, Sudhof TC. C2 domains-structure and function of a universal Ca2+-binding domain. J Biol Chem 1998; 273:15879–15882.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Eurekah.com and Kluwer Academic/Plenum Publishers

About this chapter

Cite this chapter

Martin, T.F.J. (2005). The Role of Proteins and Lipids in Organelle Biogenesis in the Secretory Pathway. In: The Biogenesis of Cellular Organelles. Molecular Biology Intelligence Unit. Springer, Boston, MA. https://doi.org/10.1007/0-387-26867-7_3

Download citation

Publish with us

Policies and ethics