Skip to main content

Hippocampal Kindling and GABAB Receptor Functions

  • Conference paper
Book cover Kindling 6

Part of the book series: Advances in Behavioral Biology ((ABBI,volume 55))

  • 599 Accesses

Abstract

Inhibition is mediated by two main types of GABA receptors — ionotropic GABAA receptors that directly open Cl− channels, and metabotropic GABAB receptors that act through G-protein coupled second messenger systems.1, 2, 3 Postsynaptic GABAB receptors are found mainly on the dendrites of pyramidal cells (Fig. 1) and interneurons in the hippocampus, and they induce a slow K+-mediated inhibitory postsynaptic current (IPSC).2 Presynaptic GABAB receptors at the axon terminals (Fig. 1) mediate presynaptic inhibition of GABAergic terminals (autoreceptors) or glutamatergic terminals (heteroreceptors), likely by decreasing Ca2+ influx.2, 4

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

7. References

  1. A. Couve, S. J. Moss, and M.N. Pangalos, GABAB receptors: a new paradigm in G protein signaling, Mol Cell Neurosci. 16, 296–312 (2000).

    Article  PubMed  CAS  Google Scholar 

  2. U. Misgeld, M. Bijak, and W. Jarolimek, A physiological role for GABAB receptors and the effects of baclofen in the mammalian central nervous system, Prog. Neurobiol. 46, 423–462 (1995).

    Article  PubMed  CAS  Google Scholar 

  3. I. Mody, Y. De Koninck, T. S. Otis, and I. Soltesz, Bridging the cleft at GABA synapses in the brain, Trends Neurosci. 17, 517–525 (1994).

    Article  PubMed  CAS  Google Scholar 

  4. N. G. Bowery, B. Bettler, W. Froestl, J. P. Gallagher, F. Marshall, M. Raiteri, T. I. Bonner, and S. J. Enna, International Union of Pharmacology. XXXIII. Mammalian gamma-aminobutyric acid(B) receptors: structure and function, Pharmacol.Rev. 54, 247–264 (2002).

    Article  PubMed  CAS  Google Scholar 

  5. H. M. Prosser, C. H. Gill, W. D. Hirst, E. Grau, M. Robbins, A. Calver, E. M. Soffin, C. E. Farmer, C. Lanneau, J. Gray, E. Schenck, B. S. Warmerdam, C. Clapham, C. Reavill, D. C. Rogers, T. Stean, N. Upton, K. Humphreys, A. Randall, M. Geppert, C. H. Davies, and M. N. Pangalos, Epileptogenesis and enhanced prepulse inhibition in GABA(B1)-deficient mice, Mol. Cell Neurosci. 17, 1059–1070 (2001).

    Article  PubMed  CAS  Google Scholar 

  6. V. Schuler, C. Luscher, C. Blanchet, N. Klix, G. Sansig, K. Klebs, M. Schmutz, J. Heid, C. Gentry, L. Urban, A. Fox, W. Spooren, A. L. Jaton, J. Vigouret, M. Pozza, P. H. Kelly, J. Mosbacher, W. Froestl, E. Kaslin, R. Korn, S. Bischoff, K. Kaupmann, P. H. van der, and B. Bettler, Epilepsy, hyperalgesia, impaired memory, and loss of pre-and postsynaptic GABA(B) responses in mice lacking GABA(B(1), Neuron 31, 47–58 (2001).

    Article  PubMed  CAS  Google Scholar 

  7. M. Vergnes, A. Boehrer, S. Simler, R. Bernasconi, and C. Marescaux, Opposite effects of GABAB receptor antagonists on absences and convulsive seizures, Eur. J. Pharmacol. 332, 245–255 (1997).

    Article  PubMed  CAS  Google Scholar 

  8. A. Dennison, G. C. Teskey, and D. P. Cain, Persistence of kindling: effect of partial kindling, retention interval, kindling site, and stimulation parameters, Epilepsy Res. 21, 171–182 (1995).

    Article  PubMed  CAS  Google Scholar 

  9. L. S. Leung, C. Wu, K. Wu, B. Shen, R. Sutherland, and D. Zhao, Long-lasting behavioral and electrophysiological effects induced by partial hippocampal kindling, in: Kindling 5, edited by M. E. Corcoran, and S. Moshe (Plenum Press, New York, 1998), pp. 395–408.

    Google Scholar 

  10. C. H. Davies, S. N. Davies, and G. L. Collingridge, Paired-pulse depression of monosynaptic GABA-mediated inhibitory postsynaptic responses in rat hippocampus, J. Physiol. (Lond.) 424, 513–531 (1990).

    CAS  Google Scholar 

  11. C. Wu and L. S. Leung, Partial hippocampal kindling decreases efficacy of presynaptic GABAB autoreceptors in CA1, J. Neurosci. 17, 9261–9269 (1997).

    PubMed  CAS  Google Scholar 

  12. E. H. Buhl, T. S. Otis, and I. Mody, Zinc-induced collapse of augmented inhibition by GABA in a temporal lobe epilepsy model, Science 271, 369–373 (1996).

    Article  PubMed  CAS  Google Scholar 

  13. R. Siushansian, N. Poon, C. Naus, J. F. Bechberger, J. Mao, and L. S. Leung, Up-regulation of mRNA expression of GABAB receptor 1B in the rat following hippocampal kindling, Neurosci. Abstr. 27, #558.6. (2001).

    Google Scholar 

  14. W. Kamphuis, J. A. Goiter, and F. H. Lopes da Silva, A long-lasting decrease in the inhibitory effect of GABA on glutamate responses of hippocampal pyramidal neurons induced by kindling epileptogenesis, Neuroscience 41, 425–431 (1991).

    Article  PubMed  CAS  Google Scholar 

  15. J. S. Isaacson, J. M. Solis, and R. A. Nicoll, Local and diffuse synaptic actions of GABA in the hippocampus, Neuron 10, 165–175 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. E. K. Asprodini, D. G. Rainnie, and P. Shinnick-Gallagher, Epileptogenesis reduces the sensitivity of presynaptic gamma-aminobutyric acid B receptors on glutamatergic afferents in the amygdala, J. Pharmacol. Exp. Ther. 262, 1011–1021 (1992).

    PubMed  CAS  Google Scholar 

  17. X. H. Liu and L. S. Leung, Partial hippocampal kindling increases GABAB receptor-mediated postsynaptic currents in CA1 pyramidal cells, Epilepsy Res. 57, 33–47 (2003).

    Article  PubMed  CAS  Google Scholar 

  18. O. Honmou, J. D. Kocsis, and G. B. Richerson, Gabapentin potentiates the conductance increase induced by nipecotic acid in CA1 pyramidal neurons in vitro, Epilepsy Res. 20, 193–202 (1995).

    Article  PubMed  CAS  Google Scholar 

  19. J. M. Solis and R. A. Nicoll, Postsynaptic action of endogenous GABA released by nipecotic acid in the hippocampus, Neurosci. Lett. 147, 16–20 (1992).

    Article  PubMed  CAS  Google Scholar 

  20. W. Kamphuis, E. Huisman, M. J. Veerman, and F. H. Lopes da Silva, Development of changes in endogenous GABA release during kindling epileptogenesis in rat hippocampus, Brain Res. 545, 33–40 (1991).

    Article  PubMed  CAS  Google Scholar 

  21. M. Zuiderwijk, G. C. Faas, F. H. Lopes da Silva, and W. E. J. M. Ghijsen, Electrically stimulated GABA release in rat hippocampus CA1 region is enhanced in kindling epileptogenesis, Neurosci. Abstr. 23, 2161 (1997).

    Google Scholar 

  22. J. Francis, B. P. Jung, G. Zhang, W. Ho, J. Cheng, W. M. Burnham, and J. H. Eubanks, Perforant pathway kindling transiently induces the mRNA expression of GABA-B receptor subtypes R1A and R2 in the adult rat hippocampus, Brain Res Mol. Brain Res. 91, 159–162 (2001).

    Article  PubMed  CAS  Google Scholar 

  23. Z. Kokaia and M. Kokaia, Changes in GABA(B) receptor immunoreactivity after recurrent seizures in rats. Neurosci. Lett. 315, 85–88 (2001).

    Article  PubMed  CAS  Google Scholar 

  24. A. Billinton, V. H. Baird, M. Thorn, J. S. Duncan, N. Upton, and N. G. Bowery, GABA(B(1)) mRNA expression in hippocampal sclerosis associated with human temporal lobe epilepsy, Brain Res. Mol. Brain Res. 86, 84–89 (2001).

    Article  PubMed  CAS  Google Scholar 

  25. A. P. Princivalle, J. S. Duncan, M. Thorn, and N. G. Bowery, Studies of GABA(B) receptors labelled with [(3)H]-CGP62349 in hippocampus resected from patients with temporal lobe epilepsy, Br. J. Pharmacol. 136, 1099–1106 (2002).

    Article  PubMed  CAS  Google Scholar 

  26. C. H. Davies, S. J. Starkey, M. F. Pozza, and G. L. Collingridge, GABAB autoreceptors regulate the induction of LTP, Nature 349, 609–611 (1991).

    Article  PubMed  CAS  Google Scholar 

  27. D. D. Mott and D. V. Lewis, Facilitation of the induction of long-term potentiation by GABAB receptors, Science 252, 1718–1720 (1991).

    Article  PubMed  CAS  Google Scholar 

  28. L. S. Leung and C. Wu, Kindling suppresses primed-burst induced long-term potentiation in hippocampal CA1, NeuroReport 14, 211–214 (2003).

    Article  PubMed  CAS  Google Scholar 

  29. R. U. Muller, M. Stead, and J. Pach, The hippocampus as a cognitive graph, J. Gen. Physiol. 107, 663–694 (1996).

    Article  PubMed  CAS  Google Scholar 

  30. L. S. Leung, D. Zhao, and B. Shen, Long-lasting effects of partial hippocampal kindling on hippocampal physiology and function, Hippocampus 4, 696–704 (1994).

    Article  PubMed  CAS  Google Scholar 

  31. L. S. Leung, Hippocampal electrical activity following local tetanization. I. Afterdischarges, Brain Res. 419, 173–187 (1987).

    Article  PubMed  CAS  Google Scholar 

  32. M. Lerner-Natoli, G. Rondouin, and M. Baldy-Moulinier, Evolution of wet dog shakes during kindling in rats: comparison between hippocampal and amygdala kindling, Exp. Neurol. 83, 1–12 (1984).

    Article  PubMed  CAS  Google Scholar 

  33. D. P. Frush and J. O. McNamara, Evidence implicating dentate granule cells in wet dog shakes produced by kindling stimulations of entorhinal cortex, Exp. Neurol., 92, 102–113 (1986).

    Article  PubMed  CAS  Google Scholar 

  34. B. P. Damiano and J. D Connor, Hippocampal mediation of shaking behavior induced by electrical stimulation of the perforant path in the rat, Brain Res. 308, 383–386 (1984).

    Article  PubMed  CAS  Google Scholar 

  35. J. Ma and L. S. Leung, Schizophrenia-like behavioral changes after partial hippocampal kindling, Brain Res. 997, 111–118 (2004).

    Article  PubMed  CAS  Google Scholar 

  36. M Koch and U. Ebert, Deficient sensorimotor gating following seizures in amygdala-kindled rats, Biol. Psychiatry 44, 290–297 (1998).

    Article  PubMed  CAS  Google Scholar 

  37. D. Braff, C. Stone, E. Callaway, M. Geyer, I. Glick, and L. Bali, Prestimulus effects on human startle reflex in normals and schizophrenics, Psychophysiology 15, 339–343 (1978).

    Article  PubMed  CAS  Google Scholar 

  38. K. M. Hershman, R. Freedman, and P. C. Bickford, GABAB antagonists diminish the inhibitory gating of auditory response in the rat hippocampus, Neurosci. Lett. 190(2), 133–6 (1995).

    Article  PubMed  CAS  Google Scholar 

  39. K. J. Canning and L. S. Leung, Excitability of rat dentate gyrus granule cells in vivo is controlled by tonic and evoked GABAB receptor-mediated inhibition, Brain Res. 86, 271–275 (2000).

    Article  Google Scholar 

  40. F. H. Brucato, R. A. Morrisett, W. A. Wilson, and H. S. Swartzwelder, The GABAB receptor antagonist, CGP-35348, inhibits paired-pulse disinhibition in the rat dentate gyrus in vivo, Brain Res. 588, 150–153 (1992).

    Article  PubMed  CAS  Google Scholar 

  41. K. Wu and L. S. Leung, Enhancement of multisynaptic transmission through the hippocampo-entorhino-hippocampal loop in partially kindled rats in vivo, Neurosci. Abstr. 25, 1351 (1999).

    Google Scholar 

  42. M. Sato, R. J. Racine, and D. C. McIntyre, Kindling: basic mechanisms and clinical validity, Electroencephalogr.Clin.Neurophysiol. 76, 459–472 (1990).

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Leung, L.S., Liu, X., Canning, K.J., Shen, B. (2005). Hippocampal Kindling and GABAB Receptor Functions. In: Corcoran, M.E., Moshé, S.L. (eds) Kindling 6. Advances in Behavioral Biology, vol 55. Springer, Boston, MA. https://doi.org/10.1007/0-387-26144-3_9

Download citation

Publish with us

Policies and ethics