Skip to main content

Monte Carlo Study of the Precipitation Kinetics of Al3Zr in Al-Zr

  • Chapter
Complex Inorganic Solids

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Soisson and G. Martin, “Monte-Carlo simulations of the decomposition of metastable solid solutions: Transient and steady-state nucleation kinetics,” Phys. Rev. B, vol. 62, pp. 203–214, 2000.

    Article  CAS  Google Scholar 

  2. Y. Le Bouar and F. Soisson, “Kinetics pathway from embedded-atom-method potential: Influence of the activation barriers,” Phys. Rev. B, vol. 65, p. 0914103, 2002.

    Article  CAS  Google Scholar 

  3. M. Athènes, P. Bellon, and G. Martin, “Effects of atomic mobilities on phase separation kinetics: a Monte-Carlo study,” Ada mater., vol. 48, pp. 2675–2688, 2000.

    Google Scholar 

  4. J. M. Roussel and P. Bellon, “Vacancy-assisted phase separation with asymmetric atomic mobility: Coarsening rates, precipitate composition, and morphology.,” Phys. Rev. B, vol. 63, p. 184114, 2001.

    Article  CAS  Google Scholar 

  5. F. Ducastelle, Order and Phase Stability in Alloys. North-Holland, Amsterdam, 1991.

    Google Scholar 

  6. Z. W. Lu, S.-H. Wei, A. Zunger, S. Frota-Pessoa, and L. G. Ferreira, “First-principles statistical mechanics of structural stability of intermetallic compounds,” Phys. Rev. B, vol. 44, pp. 512–544, 1991.

    Article  CAS  Google Scholar 

  7. N. Saunders and A. P. Miodownik, CALPHAD — Calculation of Phase Diagrams — A Comprehensive Guide. Oxford: Pergamon, 1998.

    Book  Google Scholar 

  8. C. Desgranges, F. Deffort, S. Poissonet, and G. Martin, “Interdiffusion in concentrated quaternary Ag-In-Cd-Sn alloys: Modelling and measurements,” in Defect and Diffusion Science Forum, vol. 143–147, pp. 603–608, 1997.

    Google Scholar 

  9. C. Desgranges, Comprehension et Prédiction du Comportement sous Irradiation Neutronique d’Alliages Absorbants à Base d’Argent. PhD thesis, Université Paris XI Orsay, 1998.

    Google Scholar 

  10. S. Müller, C. Wolverton, L.-W. Wang, and A. Zunger, “Prediction of alloy precipitate shapes from first principles,” Europhysics Letters, vol. 55, pp. 33–39, 2001.

    Article  Google Scholar 

  11. M. Asta, S. M. Foiles, and A. A. Quong, “First-principles calculations of bulk and interfacial thermodynamic properties for fcc-based Al-Sc alloys,” Phys. Rev. B, vol. 57, no. 18, pp. 11265–11275, 1998.

    Article  CAS  Google Scholar 

  12. S. Müller, L.-W. Wang, and A. Zunger, “First-principles kinetics theory of precipitate evolution in Al-Zn,” Modelling Simul. Mater. Sci. Eng., vol. 10, pp. 131–145, 2002.

    Article  Google Scholar 

  13. N. Ryum, “Precipitation and recrystallization in an Al-0.5 wt.% Zr alloy,” Acta Metall., vol. 17, pp. 269–278, 1969.

    Article  CAS  Google Scholar 

  14. J. D. Robson and P. B. Prangnell, “Dispersoid precipitation and process modelling in zirconium containing commercial aluminium alloys,” Acta Mater., vol. 49, pp. 599–613, 2001.

    Article  CAS  Google Scholar 

  15. E. Nes, “Precipitation of the metastable cubic Al3Zr-phase in subperitectic Al-Zr alloys,” Ada Metall., vol. 20, pp. 499–506, 1972.

    Article  CAS  Google Scholar 

  16. L. Proville and A. Finel, “Kinetics of the coherent order-disorder transion in Al3Zr,” Phys. Rev. B, vol. 64, p. 054104, 2001.

    Article  CAS  Google Scholar 

  17. O. K. Andersen, “Linear methods in band theory,” Phys. Rev. B, vol. 12, no. 8, pp. 3060–3083, 1975.

    Article  CAS  Google Scholar 

  18. M. Methfessel, “Elastic constants and phonon frequencies of Si calculated by a fast full-potential LMTO method,” Phys. Rev. B, vol. 38, no. 2, pp. 1537–1540, 1988.

    Article  CAS  Google Scholar 

  19. M. Methfessel, C. O. Rodriguez, and O. K. Andersen, “Fast full-potential calculations with a converged basis of atom-centered linear muffin-tin orbitals: Structural and dynamic properties of silicon,” Phys. Rev. B, vol. 40, no. 3, pp. 2009–2012, 1989.

    Article  CAS  Google Scholar 

  20. E. Clouet, J. M. Sanchez, and C. Sigli, “First-principles study of the solubility of Zr in Al,” Phys. Rev. B, vol. 65, p. 094105, 2002.

    Article  CAS  Google Scholar 

  21. G. Jomard, L. Magaud, and A. Pasturel, “Full-potential calculations using the generalized-gradient corrections: Structural properties of Ti, Zr and Hf under compression,” Philos. Mag. B, vol. 77, no. 1, pp. 67–74, 1998.

    Article  CAS  Google Scholar 

  22. S. V. Meshel and O. J. Kleppa, “Standard enthalpies of formation of 4d aluminides by direct synthesis calorimetry,” J. Alloys Compd., vol. 191, pp. 111–116, 1993.

    Article  Google Scholar 

  23. P. B. Desch, R. B. Schwarz, and P. Nash, “Formation of metastable Ll3 phases in Al3Zr and Al-12.5%X-25%Zr (X≡Li, Cr, Fe, Ni, Cu),” J. Less-Common Metals, vol. 168, pp. 69–80, 1991.

    Article  CAS  Google Scholar 

  24. C. Amador, J. J. Hoyt, B. C. Chakoumakos, and D. de Fontaine, “Theoretical and experimental study of relaxation in Al3Ti and Al3Zr ordered phases,” Phys. Rev. Lett., vol. 74, no. 24, pp. 4955–4958, 1995.

    Article  CAS  Google Scholar 

  25. J. M. Sanchez, F. Ducastelle, and D. Gratias, “Generalized cluster description of multicomponent systems,” Physica, vol. A 128, pp. 334–350, 1984.

    Google Scholar 

  26. D. B. Laks, L. G. Ferreira, S. Froyen, and A. Zunger, “Efficient cluster expansion for substitutional systems,” Phys. Rev. B, vol. 46, no. 19, pp. 12587–12605, 1992.

    Article  Google Scholar 

  27. R. Kikuchi, “A theory of cooperative phenomena,” Phys. Rev., vol. 81, no. 6, pp. 988–1003, 1951.

    Article  Google Scholar 

  28. J. M. Sanchez and D. de Fontaine, “Ordering in fcc lattices with first-and second-neighbor interactions,” Phys. Rev. B, vol. 21, p. 216, 1980.

    Article  CAS  Google Scholar 

  29. T. Mohri, J. M. Sanchez, and D. de Fontaine, “Binary ordering prototype phase diagrams in the cluster variation approximation,” Acta Met., vol. 33, pp. 1171–85, 1985.

    Article  CAS  Google Scholar 

  30. P. Ehrhart, P. Jung, H. Schultz, and H. Ullmaier, “Atomic defects in metals,” in Landolt-Börnstein, New Series, Group III (H. Ullmaier, ed.), vol. 25, Berlin: Springer-Verlag, 1991.

    Google Scholar 

  31. O. Le Bacq, F. Willaime, and A. Pasturel, “Unrelaxed vacancy formation energies in group-IV elements calculated by the full-potential linear muffin-tin orbital method: Invariance with crystal structure,” Phys. Rev. B, vol. 59, pp. 8508–8515, 1999.

    Article  Google Scholar 

  32. J. P. Simon, “Etude par trempe des interactions lacunes-impuretés dans les alliages dilués Al-Zr et Al-Cr,” Phys. Stat. Sol. (a), vol. 41, p. K107, 1977.

    Article  CAS  Google Scholar 

  33. H. Bakker, H. P. Bonzel, C. M. Bruff, M. A. Dayananda, W. Gust, J. Horvth, I. Kaur, G. Kidson, A. D. LeClaire, H. Mehrer, G. Murch, G. Neumann, N. Stolica, and N. A. Stolwijk, “Diffusion in solid metals and alloys,” in Landolt-Börnstein, New Series, Group III (H. Mehrer, ed.), vol. 26, Berlin: Springer-Verlag, 1990.

    Google Scholar 

  34. T. Marumo, S. Fujikawa, and K. Hirano, “Diffusion of zirconium in aluminum,” Keikinzoku-J. Jpn. Inst. Light Met, vol. 23, p. 17, 1973.

    CAS  Google Scholar 

  35. J. L. Bocquet, G. Brebec, and Y. Limoge, “Diffusion in metals ans alloys,” in Physical Metallurgy (R. W. Cahn and P. Haasen, eds.), ch. 7, pp. 536–668, Amsterdam: North-Holland, 1996.

    Google Scholar 

  36. J. Philibert, Atom Movements-Diffusion and Mass Transport in Solids. Les Ulis, France: Les éditions de physique, 1991.

    Google Scholar 

  37. A. R. Allnatt and A. B. Lidiard, Atomic Transport in Solids. Cambridge University Press, 1993.

    Google Scholar 

  38. A. Borgenstam, A. Engström, L. Höglund, and J. Agren, “DICTRA, a tool for simulation of diffusional transformations in alloys,” J. Phase Equil, vol. 21, pp. 269–280, 2000.

    Article  CAS  Google Scholar 

  39. J.-O. Andersson and J. Ågren, “Models for numerical treatment of multicomponent diffusion in simple phases,” J. Appl. Phys., vol. 72, pp. 1350–1355, 1992.

    Article  CAS  Google Scholar 

  40. C. E. Campbell, W. J. Boettinger, and U. R. Kattner, “Development of a diffusion mobility database for Ni-base superalloys,” Acta Mat., vol. 50, pp. 775–792, 2002.

    Article  CAS  Google Scholar 

  41. G. Martin, “Atomic mobility in Calm’s diffusion model,” Phys. Rev. B, vol. 41, p. 2279, 1990.

    Article  Google Scholar 

  42. M. Nastar, V. Y. Dobretsov, and G. Martin, “Self-consistent formulation of configurational kinetics close to equilibrium: the phenomenological coefficients for diffusion in crystalline solids,” Phil. Mag. A, vol. 80, p. 155, 2000.

    Article  CAS  Google Scholar 

  43. A. R. Allnatt, “Einstein and linear response formulae for the phenomenological coefficients for isothermal matter transport in solids,” J. Phys. C: Solid State Phys., vol. 15, pp. 5605–5613, 1982.

    Article  CAS  Google Scholar 

  44. G. Martin, “The theories of unmixing kinetics of solid solutions,” in Solid State Phase Transformation in Metals and Alloys, (Orsay, France), pp. 337–406, Les Éditions de Physique, 1978.

    Google Scholar 

  45. D. A. Porter and K. E. Easterling, Phase Transformations in Metals and Alloys. London: Chapman & Hall, 1992.

    Google Scholar 

  46. J. W. Cahn and J. Hilliard, “Free energy of a nonuniform system, interface free energy,” J. Chem. Phys., vol. 28, pp. 258–267, 1958.

    Article  CAS  Google Scholar 

  47. M. Methfessel and M. van Schilfgaarde, “Derivation of force theorem in density-functional theory: Application to the full-potential LMTO method,” Phys. Rev. B, vol. 48, no. 7, pp. 4937–4940, 1993.

    Article  CAS  Google Scholar 

  48. P. Hohenberg and W. Kohn, “Inhomogeneous electron gas,” Phys. Rev., vol. 136, no. 3B, pp. B864–B871, 1964.

    Article  Google Scholar 

  49. W. Kohn and L. J. Sham, “Self-consistent equations including exchange and correlations effects,” Phys. Rev., vol. 140, no. 4A, pp. A1133–A1138, 1965.

    Article  Google Scholar 

  50. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, pp. 3865–3868, 1996.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Clouet, E., Nastar, M. (2005). Monte Carlo Study of the Precipitation Kinetics of Al3Zr in Al-Zr. In: Turchi, P.E.A., Gonis, A., Rajan, K., Meike, A. (eds) Complex Inorganic Solids. Springer, Boston, MA. https://doi.org/10.1007/0-387-25953-8_17

Download citation

Publish with us

Policies and ethics