Skip to main content

Chaperone Suppression of Aggregated Protein Toxicity

  • Chapter

Part of the book series: Protein Reviews ((PRON,volume 4))

Abstract

Overwhelming experimental evidence supports the hypothesis that molecular chaperones are critical modulators of protein aggregation and toxicity in a number of protein misfolding diseases. However, the mechanism by which chaperone activity facilitates neuroprotection remains poorly understood. Early intermediates in the assembly process of Aβ aggregates have been found to be potent neurotoxins in vivo, and it is likely that prefibrillar intermediates of other disease proteins may have similar pathogenic effects. Accordingly, a key step in the pathogenesis of the various proteinopathies may stem from the aberrant interactions of altered protein conformations or prefibrillar intermediates with key cellular proteins, effectively sequestering their activity and triggering a cascade of events that culminates in neuronal dysfunction prior to the appearance of inclusions. The vast majority of animal studies have shown that chaperones facilitate neuroprotection in the absence of a visible effect on inclusion formation, suggesting that protective interactions may occur at the level of prefibrillar aggregation intermediates, or by preventing conformational changes that precede the formation of aggregation intermedites. It will be important to develop techniques that enable in vivo detection of early aggregation intermediates for the various protein misfolding diseases and determine how interaction of these intermediates with other cellular proteins, such as the molecular chaperones, alters pathogenesis. Ultimately, it is necessary to understand how the various components of the protein quality proteome work together to regulate the toxicity of misfolded proteins. Effective therapies will likely require the simultaneous modulation of numerous components of the cellular quality control apparatus, and the molecular chaperones will play a key role in these types of approaches. Because the molecular chaperones provide a first line of defense against misfolded proteins, and are likely to function at the earliest stages of disease pathogenesis, they are a particularly exciting prospect for therapeutic intervention.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adachi, H., Katsuno, M., Minamiyama, M., Sang, C., Pagoulatos, G., Angelidis, C., Kusakabe, M., Yoshiki, A., Kobayashi, Y., Doyu, M., and Sobue, G. (2003). Heat shock protein 70 chaperone overexpression ameliorates phenotypes of the spinal and bulbar muscular atrophy transgenic mouse model by reducing nuclear-localized mutant androgen receptor protein. J. Neurosci. 23:2203–2211.

    PubMed  CAS  Google Scholar 

  • Alberti, S., Esser, C., and Hohfeld, J. (2003). BAG-1—a nucleotide exchange factor of Hsc70 with multiple cellular functions. Cell Stress Chaperones 8:225–231.

    PubMed  Google Scholar 

  • Ananthan, J., Goldberg, A.L., and Voellmy, R. (1986). Abnormal proteins serve as eukaryotic stress signals and trigger the activation of heat shock genes. Science 232:522–524.

    PubMed  CAS  Google Scholar 

  • Anfinsen, C.B. (1973). Principles that govern the folding of protein chains. Science 181:223–230.

    PubMed  CAS  Google Scholar 

  • Attfield, P.V. (1987). Trehalose accumulates in Saccharomyces cerevisiae during exposure to agents that induce heat shock response. FEBS Lett. 225:259–263.

    PubMed  CAS  Google Scholar 

  • Auluck, P.K., and Bonini, N.M. (2002). Pharmacological prevention of Parkinson disease in Drosophila. Nat. Med. 8:1185–1186.

    PubMed  CAS  Google Scholar 

  • Auluck, P.K., Chan, H.Y., Trojanowski, J.Q., Lee, V.M., and Bonini, N.M. (2002). Chaperone suppression of alphasynuclein toxicity in a Drosophila model for Parkinson’s disease. Science 295:865–868.

    PubMed  CAS  Google Scholar 

  • Ballinger, C.A., Connell, P., Wu, Y., Hu, Z., Thompson, L.J., Yin, L.Y., and Patterson, C. (1999). Identification of CHIP, a novel tetratricopeptide repeat-containing protein that interacts with heat shock proteins and negatively regulates chaperone functions. Mol. Cell. Biol. 19:4535–4545.

    PubMed  CAS  Google Scholar 

  • Barral, J.M., Broadley, S.A., Schaffar, G., and Hartl, F.U. (2004). Roles of molecular chaperones in protein misfolding diseases. Semin. Cell Dev. Biol. 15:17–29.

    PubMed  CAS  Google Scholar 

  • Batulan, Z., Shinder, G.A., Minotti, S., He, B.P., Doroudchi, M.M., Nalbantoglu, J., Strong, M.J., and Durham, H.D. (2003). High threshold for induction of the stress response in motor neurons is associated with failure to activate HSF1. J. Neurosci. 23:5789–5798.

    PubMed  CAS  Google Scholar 

  • Bechtold, D.A., Rush, S.J., and Brown, I.R. (2000). Localization of the heat-shock protein Hsp70 to the synapse following hyperthermic stress in the brain. J. Neurochem. 74:641–646.

    PubMed  CAS  Google Scholar 

  • Bonifati, V., Oostra, B.A., and Heutink, P. (2004). Linking DJ-1 to neurodegeneration offers novel insights for understanding the pathogenesis of Parkinson’s disease. J. Mol. Med. 82:163–174.

    PubMed  CAS  Google Scholar 

  • Borchelt, D.R., Lee, M.K., Slunt, H.S., Guarnieri, M., Xu, Z.S., Wong, P.C., Brown, R.H., Jr., Price, D.L., Sisodia, S.S., and Cleveland, D.W. (1994). Superoxide dismutase 1 with mutations linked to familial amyotrophic lateral sclerosis possesses significant activity. Proc. Natl. Acad. Sci. USA 91:8292–8296.

    PubMed  CAS  Google Scholar 

  • Braak, H., and Braak, E. (1991). Neuropathological stageing of Alzheimer-related changes. Acta Neuropathol. (Berl.) 82:239–259.

    CAS  Google Scholar 

  • Broquet, A.H., Thomas, G., Masliah, J., Trugnan, G., and Bachelet, M. (2003). Expression of the molecular chaperone Hsp70 in detergent-resistant microdomains correlates with its membrane delivery and release. J. Biol. Chem. 278:21601–21606.

    PubMed  CAS  Google Scholar 

  • Bruening, W., Roy, J., Giasson, B., Figlewicz, D.A., Mushynski, W.E., and Durham, H.D. (1999). Up-regulation of protein chaperones preserves viability of cells expressing toxic Cu/Zn-superoxide dismutase mutants associated with amyotrophic lateral sclerosis. J. Neurochem. 72:693–699.

    PubMed  CAS  Google Scholar 

  • Bruijn, L.I., Becher, M.W., Lee, M.K., Anderson, K.L., Jenkins, N.A., Copeland, N.G., Sisodia, S.S., Rothstein, J.D., Borchelt, D.R., Price, D.L., and Cleveland, D.W. (1997). ALS-linked SOD1 mutant G85R mediates damage to astrocytes and promotes rapidly progressive disease with SOD1-containing inclusions. Neuron 18:327–338.

    PubMed  CAS  Google Scholar 

  • Bukau, B., and Horwich, A.L. (1998). The Hsp70 and Hsp60 chaperone machines. Cell 92:351–366.

    PubMed  CAS  Google Scholar 

  • Caughey, B., and Lansbury, P.T. (2003). Protofibrils, pores, fibrils, and neurodegeneration: separating the responsible protein aggregates from the innocent bystanders. Annu. Rev. Neurosci. 26:267–298.

    PubMed  CAS  Google Scholar 

  • Chai, Y., Koppenhafer, S.L., Bonini, N.M., and Paulson, H.L. (1999). Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. J. Neurosci. 19:10338–10347.

    PubMed  CAS  Google Scholar 

  • Chai, Y., Shao, J., Miller, V.M., Williams, A., and Paulson, H.L. (2002). Live-cell imaging reveals divergent intracellular dynamics of polyglutamine disease proteins and supports a sequestration model of pathogenesis. Proc. Natl. Acad. Sci. USA 99:9310–9315.

    PubMed  CAS  Google Scholar 

  • Chan, H.Y., Warrick, J.M., Gray-Board, G.L., Paulson, H.L., and Bonini, N.M. (2000). Mechanisms of chaperone suppression of polyglutamine disease: selectivity, synergy and modulation of protein solubility in Drosophila. Hum. Mol. Genet. 9:2811–2820.

    PubMed  CAS  Google Scholar 

  • Cheetham, M.E., and Caplan, A.J. (1998). Structure, function and evolution of DnaJ: conservation and adaptation of chaperone function. Cell Stress Chaperones 3:28–36.

    PubMed  CAS  Google Scholar 

  • Chui, D.H., Tanahashi, H., Ozawa, K., Ikeda, S., Checler, F., Ueda, O., Suzuki, H., Araki, W., Inoue, H., Shirotani, K., Takahashi, K., Gallyas, F., and Tabira, T. (1999). Transgenic mice with Alzheimer presenilin 1 mutations show accelerated neurodegeneration without amyloid plaque formation. Nat. Med. 5:560–564.

    PubMed  CAS  Google Scholar 

  • Chyung, A.S., Greenberg, B.D., Cook, D.G., Doms, R.W., and Lee, V.M. (1997). Novel beta-secretase cleavage of betaamyloid precursor protein in the endoplasmic reticulum/intermediate compartment of NT2N cells. J. Cell Biol. 138:671–680.

    PubMed  CAS  Google Scholar 

  • Citri, A., Kochupurakkal, B.S., and Yarden, Y. (2004). The achilles heel of ErbB-2/HER2: regulation by the Hsp90 chaperone machine and potential for pharmacological intervention. Cell Cycle 3:51–60.

    PubMed  CAS  Google Scholar 

  • Clark, J.I., and Muchowski, P.J. (2000). Small heat-shock proteins and their potential role in human disease. Curr. Opin. Struct. Biol. 10:52–59.

    PubMed  CAS  Google Scholar 

  • Cleveland, D.W., and Rothstein, J.D. (2001). From Charcot to Lou Gehrig: deciphering selective motor neuron death in ALS. Nat. Rev. Neurosci. 2:806–819.

    PubMed  CAS  Google Scholar 

  • Conway, K.A., Lee, S.J., Rochet, J.C., Ding, T.T., Harper, J.D., Williamson, R.E., and Lansbury, P.T., Jr. (2000). Accelerated oligomerization by Parkinson’s disease linked alpha-synuclein mutants. Ann. N. Y. Acad. Sci. 920:42–45.

    PubMed  CAS  Google Scholar 

  • Cook, D.G., Forman, M.S., Sung, J.C., Leight, S., Kolson, D.L., Iwatsubo, T., Lee, V.M., and Doms, R.W. (1997). Alzheimer’s A beta(1-42) is generated in the endoplasmic reticulum/intermediate compartment of NT2N cells. Nat. Med. 3:1021–1023.

    PubMed  CAS  Google Scholar 

  • Cruz, J.C., Tseng, H.C., Goldman, J.A., Shih, H., and Tsai, L.H., (2003). Aberrant Cdk5 activation by p25 triggers pathological events leading to neurodegeneration and neurofibrillary tangles. Neuron 40:471–483.

    PubMed  CAS  Google Scholar 

  • Cummings, C.J., Sun, Y., Opal, P., Antalffy, B., Mestril, R., Orr, H.T., Dillmann, W.H., and Zoghbi, H.Y., (2001). Over-expression of inducible HSP70 chaperone suppresses neuropathology and improves motor function in SCA1 mice. Hum. Mol. Genet. 10:1511–1518.

    PubMed  CAS  Google Scholar 

  • de Jong, W.W., Caspers, G.J., and Leunissen, J.A. (1998). Genealogy of the alpha-crystallin-small heat-shock protein superfamily. Int. J. Biol. Macromol. 22:151–162.

    PubMed  Google Scholar 

  • Dickson, D.W., Crystal, H.A., Bevona, C., Honer, W., Vincent, I., and Davies, P. (1995). Correlations of synaptic and pathological markers with cognition of the elderly. Neurobiol. Aging 16:285–298; discussion 298–304.

    PubMed  CAS  Google Scholar 

  • DiFiglia, M., Sapp, E., Chase, K.O., Davies, S.W., Bates, G.P., Vonsattel, J.P., and Aronin, N. (1997). Aggregation of huntingtin in neuronal intranuclear inclusions and dystrophic neurites in brain. Science 277:1990–1993.

    PubMed  CAS  Google Scholar 

  • Dobson, C.M. (2003). Protein folding and misfolding. Nature 426:884–890.

    PubMed  CAS  Google Scholar 

  • Dou, F., Netzer, W.J., Tanemura, K., Li, F., Hartl, F.U., Takashima, A., Gouras, G.K., Greengard, P., and Xu, H. (2003). Chaperones increase association of tau protein with microtubules. Proc. Natl. Acad. Sci. USA 100:721–726.

    PubMed  CAS  Google Scholar 

  • Ellis, R.J. (2001). Macromolecular crowding: an important but neglected aspect of the intracellular environment. Curr. Opin. Struct. Biol. 11:114–119.

    PubMed  CAS  Google Scholar 

  • Ellis, R.J., and Hartl, F.U. (1999). Principles of protein folding in the cellular environment. Curr. Opin. Struct. Biol. 9:102–110.

    PubMed  CAS  Google Scholar 

  • Engelender, S., Kaminsky, Z., Guo, X., Sharp, A.H., Amaravi, R.K., Kleiderlein, J.J., Margolis, R.L., Troncoso, J.C., Lanahan, A.A., Worley, P.F., Dawson, V.L., Dawson, T.M., and Ross, C.A. (1999). Synphilin-1 associates with alphasynuclein and promotes the formation of cytosolic inclusions. Nat. Genet. 22:110–114.

    PubMed  CAS  Google Scholar 

  • Evgrafov, O.V., Mersiyanova, I., Irobi, J., Van Den Bosch, L., Dierick, I., Leung, C.L., Schagina, O., Verpoorten, N., Van Impe, K., Fedotov, V., Dadali, E., Auer-Grumbach, M., Windpassinger, C., Wagner, K., Mitrovic, Z., Hilton-Jones, D., Talbot, K., Martin, J.J., Vasserman, N., Tverskaya, S., Polyakov, A., Liem, R.K., Gettemans, J., Robberecht, W., De Jonghe, P., and Timmerman, V. (2004). Mutant small heat-shock protein 27 causes axonal Charcot-Marie-Tooth disease and distal hereditary motor neuropathy. Nat. Genet. 36:602–606.

    PubMed  CAS  Google Scholar 

  • Fardeau, M., Vicart, P., Caron, A., Chateau, D., Chevallay, M., Collin, H., Chapon, F., Duboc, D., Eymard, B., Tome, F.M., Dupret, J.M., Paulin, D., and Guicheney, P. (2000). Familial myopathy with desmin storage seen as a granulo-filamentar, electron-dense material with mutation of the alphaB-cristallin gene. Rev. Neurol. (Paris) 156:497–504.

    CAS  Google Scholar 

  • Fernandez-Funez, P., Nino-Rosales, M.L., de Gouyon, B., She, W.C., Luchak, J.M., Martinez, P., Turiegano, E., Benito, J., Capovilla, M., Skinner, P.J., McCall, A., Canal, I., Orr, H.T., Zoghbi, H.Y., and Botas, J. (2000). Identification of genes that modify ataxin-1-induced neurodegeneration. Nature 408:101–106.

    PubMed  CAS  Google Scholar 

  • Fink, A.L. (1999). Chaperone-mediated protein folding. Physiol. Rev. 79:425–449.

    PubMed  CAS  Google Scholar 

  • Fonte, V., Kapulkin, V., Taft, A., Fluet, A., Friedman, D., and Link, C.D. (2002). Interaction of intracellular beta amyloid peptide with chaperone proteins. Proc. Natl. Acad. Sci. USA 99:9439–9444.

    PubMed  CAS  Google Scholar 

  • Forman, M.S., Cook, D.G., Leight, S., Doms, R.W., and Lee, V.M. (1997). Differential effects of the swedish mutant amyloid precursor protein on beta-amyloid accumulation and secretion in neurons and nonneuronal cells. J. Biol. Chem. 272:32247–32253.

    PubMed  CAS  Google Scholar 

  • Fridovich, I. (1986). Superoxide dismutases. Adv. Enzymol. Relat. Areas Mol. Biol. 58:61–97.

    PubMed  CAS  Google Scholar 

  • Glover, J.R., and Lindquist, S. (1998). Hsp104, Hsp70, and Hsp40: a novel chaperone system that rescues previously aggregated proteins. Cell 94:73–82.

    PubMed  CAS  Google Scholar 

  • Goate, A., Chartier-Harlin, M.C., Mullan, M., Brown, J., Crawford, F., Fidani, L., Giuffra, L., Haynes, A., Irving, N., James, L., et al. (1991). Segregation of a missense mutation in the amyloid precursor protein gene with familial Alzheimer’s disease. Nature 349:704–706.

    PubMed  CAS  Google Scholar 

  • Goldberg, Y.P., Nicholson, D.W., Rasper, D.M., Kalchman, M.A., Koide, H.B., Graham, R.K., Bromm, M., Kazemi-Esfarjani, P., Thornberry, N.A., Vaillancourt, J.P., and Hayden, M.R. (1996). Cleavage of huntingtin by apopain, a proapoptotic cysteine protease, is modulated by the polyglutamine tract. Nat. Genet. 13:442–449.

    PubMed  CAS  Google Scholar 

  • Hansen, J.J., Durr, A., Cournu-Rebeix, I., Georgopoulos, C., Ang, D., Nielsen, M.N., Davoine, C.S., Brice, A., Fontaine, B., Gregersen, N., and Bross, P. (2002). Hereditary spastic paraplegia SPG13 is associated with a mutation in the gene encoding the mitochondrial chaperonin Hsp60. Am. J. Hum. Genet. 70:1328–1332.

    PubMed  CAS  Google Scholar 

  • Hansson, O., Nylandsted, J., Castilho, R.F., Leist, M., Jaattela, M., and Brundin, P. (2003). Overexpression of heat shock protein 70 in R6/2 Huntington’s disease mice has only modest effects on disease progression. Brain Res. 970:47–57.

    PubMed  CAS  Google Scholar 

  • Hargitai, J., Lewis, H., Boros, I., Racz, T., Fiser, A., Kurucz, I., Benjamin, I., Vigh, L., Penzes, Z., Csermely, P., and Latchman, D.S. (2003). Bimoclomol, a heat shock protein co-inducer, acts by the prolonged activation of heat shock factor-1. Biochem. Biophys. Res. Commun. 307:689–695.

    PubMed  CAS  Google Scholar 

  • Hartl, F.U. (1996). Molecular chaperones in cellular protein folding. Nature 381:571–579.

    PubMed  CAS  Google Scholar 

  • Hartl, F.U., and Hayer-Hartl, M. (2002). Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295:1852–1858.

    PubMed  CAS  Google Scholar 

  • Hartmann, T., Bieger, S.C., Bruhl, B., Tienari, P.J., Ida, N., Allsop, D., Roberts, G.W., Masters, C.L., Dotti, C.G., Unsicker, K., and Beyreuther, K. (1997). Distinct sites of intracellular production for Alzheimer’s disease A beta40/42 amyloid peptides. Nat. Med. 3:1016–1020.

    PubMed  CAS  Google Scholar 

  • Hong, M., Zhukareva, V., Vogelsberg-Ragaglia, V., Wszolek, Z., Reed, L., Miller, B.I., Geschwind, D.H., Bird, T.D., McKeel, D., Goate, A., Morris, J.C., Wilhelmsen, K.C., Schellenberg, G.D., Trojanowski, J.Q., and Lee, V.M. (1998). Mutation-specific functional impairments in distinct tau isoforms of hereditary FTDP-17. Science 282:1914–1917.

    PubMed  CAS  Google Scholar 

  • Horwitz, J. (1992). Alpha-crystallin can function as a molecular chaperone. Proc. Natl. Acad. Sci. USA 89:10449–10453.

    PubMed  CAS  Google Scholar 

  • Hottiger, T., De Virgilio, C., Hall, M.N., Boller, T., and Wiemken, A. (1994). The role of trehalose synthesis for the acquisition of thermotolerance in yeast. II. Physiological concentrations of trehalose increase the thermal stability of proteins in vitro. Eur. J. Biochem. 219:187–193.

    PubMed  CAS  Google Scholar 

  • Hsia, A.Y., Masliah, E., McConlogue, L., Yu, G.Q., Tatsuno, G., Hu, K., Kholodenko, D., Malenka, R.C., Nicoll, R.A., and Mucke, L. (1999). Plaque-independent disruption of neural circuits in Alzheimer’s disease mouse models. Proc. Natl. Acad. Sci. USA 96:3228–3233.

    PubMed  CAS  Google Scholar 

  • Hsu, A.L., Murphy, C.T., and Kenyon, C. (2003). Regulation of aging and age-related disease by DAF-16 and heat-shock factor. Science 300:1142–1145.

    PubMed  CAS  Google Scholar 

  • Hutton, M., Lendon, C. L., Rizzu, P., Baker, M., Froelich, S., Houlden, H., Pickering-Brown, S., Chakraverty, S., Isaacs, A., Grover, A., Hackett, J., Adamson, J., Lincoln, S., Dickson, D., Davies, P., Petersen, R.C., Stevens, M., de Graaff, E., Wauters, E., van Baren, J., Hillebrand, M., Joosse, M., Kwon, J.M., Nowotny, P., Heutink, P., and et al. (1998). Association of missense and 5′-splice-site mutations in tau with the inherited dementia FTDP-17. Nature 393:702–705.

    PubMed  CAS  Google Scholar 

  • Igarashi, S., Koide, R., Shimohata, T., Yamada, M., Hayashi, Y., Takano, H., Date, H., Oyake, M., Sato, T., Sato, A., Egawa, S., Ikeuchi, T., Tanaka, H., Nakano, R., Tanaka, K., Hozumi, I., Inuzuka, T., Takahashi, H., and Tsuji, S. (1998). Suppression of aggregate formation and apoptosis by transglutaminase inhibitors in cells expressing truncated DRPLA protein with an expanded polyglutamine stretch. Nat. Genet. 18:111–117.

    PubMed  CAS  Google Scholar 

  • Ikeda, H., Yamaguchi, M., Sugai, S., Aze, Y., Narumiya, S., and Kakizuka, A. (1996). Expanded polyglutamine in the Machado-Joseph disease protein induces cell death in vitro and in vivo. Nat. Genet. 13:196–202.

    PubMed  CAS  Google Scholar 

  • Irobi, J., Van Impe, K., Seeman, P., Jordanova, A., Dierick, I., Verpoorten, N., Michalik, A., De Vriendt, E., Jacobs, A., Van Gerwen, V., Vennekens, K., Mazanec, R., Tournev, I., Hilton-Jones, D., Talbot, K., Kremensky, I., Van Den Bosch, L., Robberecht, W., Van Vandekerckhove, J., Broeckhoven, C., Gettemans, J., De Jonghe, P., and Timmerman, V. (2004). Hot-spot residue in small heat-shock protein 22 causes distal motor neuropathy. Nat. Genet. 36:597–601.

    PubMed  CAS  Google Scholar 

  • Ishihara, K., Yamagishi, N., Saito, Y., Adachi, H., Kobayashi, Y., Sobue, G., Ohtsuka, K., and Hatayama, T. (2003). Hsp105alpha suppresses the aggregation of truncated androgen receptor with expanded CAG repeats and cell toxicity. J. Biol. Chem. 278:25143–25150.

    PubMed  CAS  Google Scholar 

  • Jackson, G.R., Wiedau-Pazos, M., Sang, T.K., Wagle, N., Brown, C.A., Massachi, S., and Geschwind, D.H. (2002). Human wild-type tau interacts with wingless pathway components and produces neurofibrillary pathology in Drosophila. Neuron 34:509–519.

    PubMed  CAS  Google Scholar 

  • Jana, N.R., Tanaka, M., Wang, G., and Nukina, N. (2000). Polyglutamine length-dependent interaction of Hsp40 and Hsp70 family chaperones with truncated N-terminal huntingtin: their role in suppression of aggregation and cellular toxicity. Hum. Mol. Genet. 9:2009–2018.

    PubMed  CAS  Google Scholar 

  • Jiang, J., Ballinger, C.A., Wu, Y., Dai, Q., Cyr, D.M., Hohfeld, J., and Patterson, C. (2001). CHIP is a U-box-dependent E3 ubiquitin ligase: identification of Hsc70 as a target for ubiquitylation. J. Biol. Chem. 276:42938–42944.

    PubMed  CAS  Google Scholar 

  • Kakimura, J., Kitamura, Y., Taniguchi, T., Shimohama, S., and Gebicke-Haerter, P.J. (2001). Bip/GRP78-induced production of cytokines and uptake of amyloid-beta(1-42) peptide in microglia. Biochem. Biophys. Res. Commun. 281:6–10.

    PubMed  CAS  Google Scholar 

  • Kakimura, J., Kitamura, Y., Takata, K., Tsuchiya, D., Taniguchi, T., Gebicke-Haerter, P.J., Smith, M.A., Perry, G., and Shimohama, S. (2002a). Possible involvement of ER chaperone Grp78 on reduced formation of amyloid-beta deposits. Ann. N. Y. Acad. Sci. 977:327–332.

    PubMed  CAS  Google Scholar 

  • Kakimura, J., Kitamura, Y., Takata, K., Umeki, M., Suzuki, S., Shibagaki, K., Taniguchi, T., Nomura, Y., Gebicke-Haerter, P.J., Smith, M.A., Perry, G., and Shimohama, S. (2002b). Microglial activation and amyloid-beta clearance induced by exogenous heat-shock proteins. FASEB J. 16:601–603.

    PubMed  CAS  Google Scholar 

  • Katayama, T., Imaizumi, K., Sato, N., Miyoshi, K., Kudo, T., Hitomi, J., Morihara, T., Yoneda, T., Gomi, F., Mori, Y., Nakano, Y., Takeda, J., Tsuda, T., Itoyama, Y., Murayama, O., Takashima, A., St. George-Hyslop, P., Takeda, M., and Tohyama, M. (1999). Presenilin-1 mutations downregulate the signalling pathway of the unfolded-protein response. Nat. Cell Biol. 1:479–485.

    PubMed  CAS  Google Scholar 

  • Kato, S., Takikawa, M., Nakashima, K., Hirano, A., Cleveland, D.W., Kusaka, H., Shibata, N., Kato, M., Nakano, I., and Ohama, E. (2000). New consensus research on neuropathological aspects of familial amyotrophic lateral sclerosis with superoxide dismutase 1 (SOD1) gene mutations: inclusions containing SOD1 in neurons and astrocytes. Amyotroph. Lateral Scler. Other Motor Neuron Disord. 1:163–184.

    PubMed  CAS  Google Scholar 

  • Kayed, R., Head, E., Thompson, J.L., McIntire, T.M., Milton, S.C., Cotman, C.W., and Glabe, C.G. (2003). Common structure of soluble amyloid oligomers implies common mechanism of pathogenesis. Science 300:486–489.

    PubMed  CAS  Google Scholar 

  • Kazemi-Esfarjani, P., and Benzer, S. (2000). Genetic suppression of polyglutamine toxicity in Drosophila. Science 287:1837–1840.

    PubMed  CAS  Google Scholar 

  • Kim, S., Nollen, E.A., Kitagawa, K., Bindokas, V.P., and Morimoto, R.I. (2002). Polyglutamine protein aggregates are dynamic. Nat. Cell Biol. 4:826–831.

    PubMed  CAS  Google Scholar 

  • Kitada, T., Asakawa, S., Hattori, N., Matsumine, H., Yamamura, Y., Minoshima, S., Yokochi, M., Mizuno, Y., and Shimizu, N. (1998). Mutations in the parkin gene cause autosomal recessive juvenile parkinsonism. Nature 392:605–608.

    PubMed  CAS  Google Scholar 

  • Klucken, J., Shin, Y., Masliah, E., Hyman, B.T., and McLean, P.J. (2004). Hsp70 reduces alpha-synuclein aggregation and toxicity. J. Biol. Chem.

    Google Scholar 

  • Kobayashi, Y., Miwa, S., Merry, D.E., Kume, A., Mei, L., Doyu, M., and Sobue, G. (1998). Caspase-3 cleaves the expanded androgen receptor protein of spinal and bulbar muscular atrophy in a polyglutamine repeat length-dependent manner. Biochem. Biophys. Res. Commun. 252:145–150.

    PubMed  CAS  Google Scholar 

  • Kobayashi, Y., Kume, A., Li, M., Doyu, M., Hata, M., Ohtsuka, K., and Sobue, G. (2000). Chaperones Hsp70 and Hsp40 suppress aggregate formation and apoptosis in cultured neuronal cells expressing truncated androgen receptor protein with expanded polyglutamine tract. J. Biol. Chem. 275:8772–8778.

    PubMed  CAS  Google Scholar 

  • Kraemer, B.C., Zhang, B., Leverenz, J.B., Thomas, J.H., Trojanowski, J.Q., and Schellenberg, G.D. (2003). Neurodegeneration and defective neurotransmission in a Caenorhabditis elegans model of tauopathy. Proc. Natl. Acad. Sci. USA 100:9980–9985.

    PubMed  CAS  Google Scholar 

  • Krichevsky, A.M., and Kosik, K.S. (2002). RNAi functions in cultured mammalian neurons. Proc. Natl. Acad. Sci. USA 99:11926–11929.

    PubMed  CAS  Google Scholar 

  • Krobitsch, S., and Lindquist, S. (2000). Aggregation of huntingtin in yeast varies with the length of the polyglutamine expansion and the expression of chaperone proteins. Proc. Natl. Acad. Sci. USA 97:1589–1594.

    PubMed  CAS  Google Scholar 

  • Kudva, Y.C., Hiddinga, H.J., Butler, P.C., Mueske, C.S., and Eberhardt, N.L. (1997). Small heat shock proteins inhibit in vitro A beta(1-42) amyloidogenesis. FEBS Lett. 416:117–121.

    PubMed  CAS  Google Scholar 

  • Kumar-Singh, S., Dewachter, I., Moechars, D., Lubke, U., De Jonghe, C., Ceuterick, C., Checler, F., Naidu, A., Cordell, B., Cras, P., Van Broeckhoven, C., and Van Leuven, F. (2000). Behavioral disturbances without amyloid deposits in mice overexpressing human amyloid precursor protein with Flemish (A692G) or Dutch (E693Q) mutation. Neurobiol. Dis. 7:9–22.

    PubMed  CAS  Google Scholar 

  • Lee, V.M., Goedert, M., and Trojanowski, J.Q. (2001). Neurodegenerative tauopathies. Annu. Rev. Neurosci. 24:1121–1159.

    PubMed  CAS  Google Scholar 

  • Leroy, E., Boyer, R., Auburger, G., Leube, B., Ulm, G., Mezey, E., Harta, G., Brownstein, M.J., Jonnalagada, S., Chernova, T., Dehejia, A., Lavedan, C., Gasser, T., Steinbach, P.J., Wilkinson, K.D., and Polymeropoulos, M.H. (1998). The ubiquitin pathway in Parkinson’s disease. Nature 395:451–452.

    PubMed  CAS  Google Scholar 

  • Levy-Lahad, E., Wijsman, E.M., Nemens, E., Anderson, L., Goddard, K.A., Weber, J.L., Bird, T.D., and Schellenberg, G.D. (1995). A familial Alzheimer’s disease locus on chromosome 1. Science 269:970–973.

    PubMed  CAS  Google Scholar 

  • Liang, J.J. (2000). Interaction between beta-amyloid and lens alphaB-crystallin. FEBS Lett. 484:98–101.

    PubMed  CAS  Google Scholar 

  • Lindquist, S. (1986). The heat-shock response. Annu. Rev. Biochem. 55:1151–1191.

    PubMed  CAS  Google Scholar 

  • Lindquist, S., and Kim, G. (1996). Heat-shock protein 104 expression is sufficient for thermotolerance in yeast. Proc. Natl. Acad. Sci. USA 93:5301–5306.

    PubMed  CAS  Google Scholar 

  • Litt, M., Kramer, P., LaMorticella, D.M., Murphey, W., Lovrien, E.W., and Weleber, R.G. (1998). Autosomal dominant congenital cataract associated with a missense mutation in the human alpha crystallin gene CRYAA. Hum. Mol. Genet. 7:471–474.

    PubMed  CAS  Google Scholar 

  • Lowenstein, D.H., Chan, P.H., and Miles, M.F. (1991). The stress protein response in cultured neurons: characterization and evidence for a protective role in excitotoxicity. Neuron 7:1053–1060.

    PubMed  CAS  Google Scholar 

  • Luders, J., Demand, J., and Hohfeld, J. (2000). The ubiquitin-related BAG-1 provides a link between the molecular chaperones Hsc70/Hsp70 and the proteasome. J. Biol. Chem. 275:4613–4617.

    PubMed  CAS  Google Scholar 

  • Lue, L.F., Kuo, Y.M., Roher, A.E., Brachova, L., Shen, Y., Sue, L., Beach, T., Kurth, J.H., Rydel, R.E., and Rogers, J. (1999). Soluble amyloid beta peptide concentration as a predictor of synaptic change in Alzheimer’s disease. Am. J. Pathol. 155:853–862.

    PubMed  CAS  Google Scholar 

  • Magrane, J., Smith, R.C., Walsh, K., and Querfurth, H.W. (2004). Heat shock protein 70 participates in the neuro-protective response to intracellularly expressed beta-amyloid in neurons. J. Neurosci. 24:1700–1706.

    PubMed  CAS  Google Scholar 

  • Mangiarini, L., Sathasivam, K., Seller, M., Cozens, B., Harper, A., Hetherington, C., Lawton, M., Trottier, Y., Lehrach, H., Davies, S.W., and Bates, G.P. (1996). Exon 1 of the HD gene with an expanded CAG repeat is sufficient to cause a progressive neurological phenotype in transgenic mice. Cell 87:493–506.

    PubMed  CAS  Google Scholar 

  • Mangiarini, L., Sathasivam, K., Mahal, A., Mott, R., Seller, M., and Bates, G.P. (1997). Instability of highly expanded CAG repeats in mice transgenic for the Huntington’s disease mutation. Nat. Genet. 15:197–200.

    PubMed  CAS  Google Scholar 

  • Maraganore, D.M., Farrer, M.J., Hardy, J.A., Lincoln, S.J., McDonnell, S.K., and Rocca, W.A. (1999). Case-control study of the ubiquitin carboxy-terminal hydrolase L1 gene in Parkinson’s disease. Neurology 53:1858–1860.

    PubMed  CAS  Google Scholar 

  • Martindale, D., Hackam, A., Wieczorek, A., Ellerby, L., Wellington, C., McCutcheon, K., Singaraja, R., Kazemi-Esfarjani, P., Devon, R., Kim, S.U., Bredesen, D.E., Tufaro, F., and Hayden, M.R. (1998). Length of huntingtin and its polyglutamine tract influences localization and frequency of intracellular aggregates. Nat. Genet. 18:150–154.

    PubMed  CAS  Google Scholar 

  • McLean, C.A., Cherny, R.A., Fraser, F.W., Fuller, S.J., Smith, M.J., Beyreuther, K., Bush, A.I., and Masters, C.L. (1999). Soluble pool of Abeta amyloid as a determinant of severity of neurodegeneration in Alzheimer’s disease. Ann. Neurol. 46:860–866.

    PubMed  CAS  Google Scholar 

  • McLean, P.J., Kawamata, H., and Hyman, B.T. (2001). Alpha-synuclein-enhanced green fluorescent protein fusion proteins form proteasome sensitive inclusions in primary neurons. Neuroscience 104:901–912.

    PubMed  CAS  Google Scholar 

  • McLean, P.J., Kawamata, H., Shariff, S., Hewett, J., Sharma, N., Ueda, K., Breakefield, X.O. and Hyman, B.T. (2002). TorsinA and heat shock proteins act as molecular chaperones: suppression of alpha-synuclein aggregation. J. Neurochem. 83:846–854.

    PubMed  CAS  Google Scholar 

  • Meriin, A.B., Zhang, X., He, X., Newnam, G.P., Chernoff, Y.O., and Sherman, M.Y. (2002). Huntington toxicity in yeast model depends on polyglutamine aggregation mediated by a prion-like protein Rnq1. J. Cell Biol. 157:997–1004.

    PubMed  CAS  Google Scholar 

  • Merry, D.E., Kobayashi, Y., Bailey, C.K., Taye, A.A., and Fischbeck, K.H. (1998). Cleavage, aggregation and toxicity of the expanded androgen receptor in spinal and bulbar muscular atrophy. Hum. Mol. Genet. 7:693–701.

    PubMed  CAS  Google Scholar 

  • Minami, Y., Hohfeld, J., Ohtsuka, K., and Hartl, F.U. (1996). Regulation of the heat-shock protein 70 reaction cycle by the mammalian DnaJ homolog, Hsp40. J. Biol. Chem. 271:19617–19624.

    PubMed  CAS  Google Scholar 

  • Mitraki, A., Betton, J.M., Desmadril, M., and Yon, J.M. (1987). Quasi-irreversibility in the unfolding-refolding transition of phosphoglycerate kinase induced by guanidine hydrochloride. Eur. J. Biochem. 163:29–34.

    PubMed  CAS  Google Scholar 

  • Miyashita, T., Okamura-Oho, Y., Mito, Y., Nagafuchi, S., and Yamada, M. (1997). Dentatorubral pallidoluysian atrophy (DRPLA) protein is cleaved by caspase-3 during apoptosis. J. Biol. Chem. 272:29238–29242.

    PubMed  CAS  Google Scholar 

  • Moechars, D., Dewachter, I., Lorent, K., Reverse, D., Baekelandt, V., Naidu, A., Tesseur, I., Spittaels, K., Haute, C.V., Checler, F., Godaux, E., Cordell, B., and Van Leuven, F. (1999). Early phenotypic changes in transgenic mice that overexpress different mutants of amyloid precursor protein in brain. J. Biol. Chem. 274:6483–6492.

    PubMed  CAS  Google Scholar 

  • Morimoto, R.I., and Santoro, M.G. (1998). Stress-inducible responses and heat shock proteins: new pharmacologic targets for cytoprotection. Nat. Biotechnol. 16:833–838.

    PubMed  CAS  Google Scholar 

  • Muchowski, P.J. (2002). Protein misfolding, amyloid formation, and neurodegeneration: a critical role for molecular chaperones? Neuron 35:9–12.

    PubMed  CAS  Google Scholar 

  • Muchowski, P.J., Schaffar, G., Sittler, A., Wanker, E.E., Hayer-Hartl, M.K., and Hartl, F.U. (2000). Hsp70 and hsp40 chaperones can inhibit self-assembly of polyglutamine proteins into amyloid-like fibrils. Proc. Natl. Acad. Sci. USA 97:7841–7846.

    PubMed  CAS  Google Scholar 

  • Muchowski, P.J., Ning, K., D’Souza-Schorey, C., and Fields, S. (2002). Requirement of an intact microtubule cytoskeleton for aggregation and inclusion body formation by a mutant huntingtin fragment. Proc. Natl. Acad. Sci. USA 99:727–732.

    PubMed  CAS  Google Scholar 

  • Murata, S., Chiba, T., and Tanaka, K. (2003). CHIP: a quality-control E3 ligase collaborating with molecular chaperones. Int. J. Biochem. Cell Biol. 35:572–578.

    PubMed  CAS  Google Scholar 

  • Nollen, E.A., Garcia, S.M., van Haaften, G., Kim, S., Chavez, A., Morimoto, R.I., and Plasterk, R.H. (2004). Genomewide RNA interference screen identifies previously undescribed regulators of polyglutamine aggregation. Proc. Natl. Acad. Sci. USA 101:6403–6408.

    PubMed  CAS  Google Scholar 

  • Paresce, D.M., Ghosh, R.N., and Maxfield, F.R. (1996). Microglial cells internalize aggregates of the Alzheimer’s disease amyloid beta-protein via a scavenger receptor. Neuron 17:553–565.

    PubMed  CAS  Google Scholar 

  • Petrucelli, L., Dickson, D., Kehoe, K., Taylor, J., Snyder, H., Grover, A., De Lucia, M., McGowan, E., Lewis, J., Prihar, G., Kim, J., Dillmann, W.H., Browne, S.E., Hall, A., Voellmy, R., Tsuboi, Y., Dawson, T.M., Wolozin, B., Hardy, J., and Hutton, M. (2004). CHIP and Hsp70 regulate tau ubiquitination, degradation and aggregation. Hum. Mol. Genet. 13:703–714.

    PubMed  CAS  Google Scholar 

  • Poirier, M.A., Li, H., Macosko, J., Cai, S., Amzel, M., and Ross, C.A. (2002). Huntingtin spheroids and protofibrils as precursors in polyglutamine fibrilization. J. Biol. Chem. 277:41032–41037.

    PubMed  CAS  Google Scholar 

  • Polymeropoulos, M.H., Lavedan, C., Leroy, E., Ide, S.E., Dehejia, A., Dutra, A., Pike, B., Root, H., Rubenstein, J., Boyer, R., Stenroos, E.S., Chandrasekharappa, S., Athanassiadou, A., Papapetropoulos, T., Johnson, W.G., Lazzarini, A.M., Duvoisin, R.C., Di Iorio, G., Golbe, L.I., and Nussbaum, R.L. (1997). Mutation in the alpha-synuclein gene identified in families with Parkinson’s disease. Science 276:2045–2047.

    PubMed  CAS  Google Scholar 

  • Prodromou, C., Roe, S.M., O’Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1997). Identification and structural characterization of the ATP/ADP-binding site in the Hsp90 molecular chaperone. Cell 90:65–75.

    PubMed  CAS  Google Scholar 

  • Ratovitski, T., Corson, L.B., Strain, J., Wong, P., Cleveland, D.W., Culotta, V.C., and Borchelt, D.R. (1999). Variation in the biochemical/biophysical properties of mutant superoxide dismutase 1 enzymes and the rate of disease progression in familial amyotrophic lateral sclerosis kindreds. Hum. Mol. Genet. 8:1451–1460.

    PubMed  CAS  Google Scholar 

  • Ravikumar, B., Duden, R., and Rubinsztein, D.C. (2002). Aggregate-prone proteins with polyglutamine and polyalanine expansions are degraded by autophagy. Hum. Mol. Genet. 11:1107–1117.

    PubMed  CAS  Google Scholar 

  • Roe, S.M., Prodromou, C., O’Brien, R., Ladbury, J.E., Piper, P.W., and Pearl, L.H. (1999). Structural basis for inhibition of the Hsp90 molecular chaperone by the antitumor antibiotics radicicol and geldanamycin. J. Med. Chem. 42:260–266.

    PubMed  CAS  Google Scholar 

  • Scherzinger, E., Lurz, R., Turmaine, M., Mangiarini, L., Hollenbach, B., Hasenbank, R., Bates, G.P., Davies, S.W., Lehrach, H., and Wanker, E.E. (1997). Huntingtin-encoded polyglutamine expansions form amyloid-like protein aggregates in vitro and in vivo. Cell 90:549–558.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (1999). Translating cell biology into therapeutic advances in Alzheimer’s disease. Nature 399:A23–A31.

    PubMed  CAS  Google Scholar 

  • Selkoe, D.J. (2001). Alzheimer’s disease: genes, proteins, and therapy. Physiol. Rev. 81:741–766.

    PubMed  CAS  Google Scholar 

  • Sherman, M.Y., and Goldberg, A.L. (2001). Cellular defenses against unfolded proteins: a cell biologist thinks about neurodegenerative diseases. Neuron 29:15–32.

    PubMed  CAS  Google Scholar 

  • Sherrington, R., Rogaev, E.I., Liang, Y., Rogaeva, E.A., Levesque, G., Ikeda, M., Chi, H., Lin, C., Li, G., Holman, K., et al. (1995). Cloning of a gene bearing missense mutations in early-onset familial Alzheimer’s disease. Nature. 375:754–760.

    PubMed  CAS  Google Scholar 

  • Shimura, H., Miura-Shimura, Y., and Kosik, K.S. (2004a). Binding of tau to heat shock protein 27 leads to decreased concentration of hyperphosphorylated tau and enhanced cell survival. J. Biol. Chem. 279:17957–17962.

    PubMed  CAS  Google Scholar 

  • Shimura, H., Schwartz, D., Gygi, S.P., and Kosik, K.S. (2004b). CHIP-Hsc70 complex ubiquitinates phosphorylated tau and enhances cell survival. J. Biol. Chem. 279:4869–4876.

    PubMed  CAS  Google Scholar 

  • Shinder, G.A., Lacourse, M.C., Minotti, S., and Durham, H.D. (2001). Mutant Cu/Zn-superoxide dismutase proteins have altered solubility and interact with heat shock/stress proteins in models of amyotrophic lateral sclerosis. J. Biol. Chem. 276:12791–12796.

    PubMed  CAS  Google Scholar 

  • Shorter, J., and Lindquist, S. (2004). Hsp104 catalyzes formation and elimination of self-replicating Sup35 prion conformers. Science.

    Google Scholar 

  • Singer, M.A., and Lindquist, S. (1998). Multiple effects of trehalose on protein folding in vitro and in vivo. Mol Cell. 1:639–648.

    PubMed  CAS  Google Scholar 

  • Singleton, A.B., Farrer, M., Johnson, J., Singleton, A., Hague, S., Kachergus, J., Hulihan, M., Peuralinna, T., Dutra, A., Nussbaum, R., Lincoln, S., Crawley, A., Hanson, M., Maraganore, D., Adler, C., Cookson, M.R., Muenter, M., Baptista, M., Miller, D., Blancato, J., Hardy, J., and Gwinn-Hardy, K. (2003). alpha-Synuclein locus triplication causes Parkinson’s disease. Science 302:841.

    PubMed  CAS  Google Scholar 

  • Sittler, A., Lurz, R., Lueder, G., Priller, J., Lehrach, H., Hayer-Hartl, M.K., Hartl, F.U., and Wanker, E.E. (2001). Geldanamycin activates a heat shock response and inhibits huntingtin aggregation in a cell culture model of Huntington’s disease. Hum. Mol. Genet. 10:1307–1315.

    PubMed  CAS  Google Scholar 

  • Smith, D.F., Whitesell, L., and Katsanis, E. (1998). Molecular chaperones: biology and prospects for pharmacological intervention. Pharmacol. Rev. 50:493–514.

    PubMed  CAS  Google Scholar 

  • Soti, C., and Csermely, P. (2002). Chaperones and aging: role in neurodegeneration and in other civilizational diseases. Neurochem. Int. 41:383–389.

    PubMed  CAS  Google Scholar 

  • Spillantini, M.G., Schmidt, M.L., Lee, V.M., Trojanowski, J.Q., Jakes, R., and Goedert, M. (1997). Alpha-synuclein in Lewy bodies. Nature 388:839–840.

    PubMed  CAS  Google Scholar 

  • Stathopulos, P.B., Rumfeldt, J.A., Scholz, G.A., Irani, R.A., Frey, H.E., Hallewell, R.A., Lepock, J.R., and Meiering, E.M. (2003). Cu/Zn superoxide dismutase mutants associated with amyotrophic lateral sclerosis show enhanced formation of aggregates in vitro. Proc. Natl. Acad. Sci. USA 100:7021–7026.

    PubMed  CAS  Google Scholar 

  • Stege, G.J., Renkawek, K., Overkamp, P.S., Verschuure, P., van Rijk, A.F., Reijnen-Aalbers, A., Boelens, W.C., Bosman, G.J., and de Jong, W.W. (1999). The molecular chaperone alphaB-crystallin enhances amyloid beta neurotoxicity. Biochem. Biophys. Res. Commun. 262:152–156.

    PubMed  CAS  Google Scholar 

  • Takata, K., Kitamura, Y., Tsuchiya, D., Kawasaki, T., Taniguchi, T., and Shimohama, S. (2003). Heat shock protein-90-induced microglial clearance of exogenous amyloid-beta1-42 in rat hippocampus in vivo. Neurosci. Lett. 344:87–90.

    PubMed  CAS  Google Scholar 

  • Takeuchi, H., Kobayashi, Y., Yoshihara, T., Niwa, J., Doyu, M., Ohtsuka, K., and Sobue, G. (2002). Hsp70 and Hsp40 improve neurite outgrowth and suppress intracytoplasmic aggregate formation in cultured neuronal cells expressing mutant SOD1. Brain Res. 949:11–22.

    PubMed  CAS  Google Scholar 

  • Tanaka, M., Machida, Y., Niu, S., Ikeda, T., Jana, N.R., Doi, H., Kurosawa, M., Nekooki, M., and Nukina, N. (2004). Trehalose alleviates polyglutamine-mediated pathology in a mouse model of Huntington disease. Nat. Med. 10:148–154.

    PubMed  CAS  Google Scholar 

  • Tatzelt, J., Prusiner, S.B., and Welch, W.J. (1996). Chemical chaperones interfere with the formation of scrapie prion protein. EMBO J. 15:6363–6373.

    PubMed  CAS  Google Scholar 

  • Tavaria, M., Gabriele, T., Kola, I., and Anderson, R.L. (1996). A hitchhiker’s guide to the human Hsp70 family. Cell Stress Chaperones 1:23–28.

    PubMed  CAS  Google Scholar 

  • Taylor, J.P., Tanaka, F., Robitschek, J., Sandoval, C.M., Taye, A., Markovic-Plese, S., and Fischbeck, K.H. (2003). Aggresomes protect cells by enhancing the degradation of toxic polyglutamine-containing protein. Hum. Mol. Genet. 12:749–757.

    PubMed  CAS  Google Scholar 

  • Terry, R.D., Peck, A., DeTeresa, R., Schechter, R., and Horoupian, D.S. (1981). Some morphometric aspects of the brain in senile dementia of the Alzheimer type. Ann. Neurol. 10:184–192.

    PubMed  CAS  Google Scholar 

  • The Huntington’s Disease Collaborative Research Group. (1993). A novel gene containing a trinucleotide repeat that is expanded and unstable on Huntington’s disease chromosomes. Cell 72:971–983.

    Google Scholar 

  • Tienari, P.J., Ida, N., Ikonen, E., Simons, M., Weidemann, A., Multhaup, G., Masters, C.L., Dotti, C.G., and Beyreuther, K. (1997). Intracellular and secreted Alzheimer beta-amyloid species are generated by distinct mechanisms in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 94:4125–4130.

    PubMed  CAS  Google Scholar 

  • Valente, E.M., Abou-Sleiman, P.M., Caputo, V., Muqit, M.M., Harvey, K., Gispert, S., Ali, Z., Del Turco, D., Bentivoglio, A.R., Healy, D.G., Albanese, A., Nussbaum, R., Gonzalez-Maldonado, R., Deller, T., Salvi, S., Cortelli, P., Gilks, W.P., Latchman, D.S., Harvey, R.J., Dallapiccola, B., Auburger, G., and Wood, N.W. (2004). Hereditary early-onset Parkinson’s disease caused by mutations in PINK1. Science 304:1158–1160.

    PubMed  CAS  Google Scholar 

  • van Duijn, C.M., Dekker, M.C., Bonifati, V., Galjaard, R.J., Houwing-Duistermaat, J.J., Snijders, P.J., Testers, L., Breedveld, G.J., Horstink, M., Sandkuijl, L.A., van Swieten, J.C., Oostra, B.A., and Heutink, P. (2001). Park7, a novel locus for autosomal recessive early-onset parkinsonism, on chromosome 1p36. Am. J. Hum. Genet. 69:629–634.

    PubMed  Google Scholar 

  • Vicart, P., Caron, A., Guicheney, P., Li, Z., Prevost, M.C., Faure, A., Chateau, D., Chapon, F., Tome, F., Dupret, J.M., Paulin, D., and Fardeau, M. (1998). A missense mutation in the alphaB-crystallin chaperone gene causes a desminrelated myopathy. Nat. Genet. 20:92–95.

    PubMed  CAS  Google Scholar 

  • Wacker, J.L., Zareie, M.H., Fong, H., Sarikaya, M., and Muchowski, P.J. (2004). Kinetic destabilization of pre-fibrillar polyglutamine intermediates by the molecular chaperones Hsp70/Hsp40. submitted.

    Google Scholar 

  • Waelter, S., Boeddrich, A., Lurz, R., Scherzinger, E., Lueder, G., Lehrach, H., and Wanker, E.E. (2001). Accumulation of mutant huntingtin fragments in aggresome-like inclusion bodies as a result of insufficient protein degradation. Mol. Biol. Cell 12:1393–1407.

    PubMed  CAS  Google Scholar 

  • Wall, D., Zylicz, M., and Georgopoulos, C. (1994). The NH2-terminal 108 amino acids of the Escherichia coli DnaJ protein stimulate the ATPase activity of DnaK and are sufficient for lambda replication. J. Biol. Chem. 269:5446–5451.

    PubMed  CAS  Google Scholar 

  • Wall, D., Zylicz, M., and Georgopoulos, C. (1995). The conserved G/F motif of the DnaJ chaperone is necessary for the activation of the substrate binding properties of the DnaK chaperone. J. Biol. Chem. 270:2139–2144.

    PubMed  CAS  Google Scholar 

  • Walsh, D.M., Klyubin, I., Fadeeva, J.V., Cullen, W.K., Anwyl, R., Wolfe, M.S., Rowan, M.J., and Selkoe, D.J. (2002). Naturally secreted oligomers of amyloid beta protein potently inhibit hippocampal long-term potentiation in vivo. Nature 416:535–539.

    PubMed  CAS  Google Scholar 

  • Wang, A., and Bolen, D.W. (1997). A naturally occurring protective system in urea-rich cells: mechanism of osmolyte protection of proteins against urea denaturation. Biochemistry 36:9101–9108.

    PubMed  CAS  Google Scholar 

  • Wang, J., Dickson, D.W., Trojanowski, J.Q., and Lee, V.M. (1999). The levels of soluble versus insoluble brain Abeta distinguish Alzheimer’s disease from normal and pathologic aging. Exp. Neurol. 158:328–337.

    PubMed  CAS  Google Scholar 

  • Wanker, E.E. (2000). Protein aggregation and pathogenesis of Huntington’s disease: mechanisms and correlations. Biol. Chem. 381:937–942.

    PubMed  CAS  Google Scholar 

  • Warrick, J.M., Chan, H.Y., Gray-Board, G.L., Chai, Y., Paulson, H.L., and Bonini, N.M. (1999). Suppression of polyglutamine-mediated neurodegeneration in Drosophila by the molecular chaperone HSP70. Nat. Genet. 23:425–428.

    PubMed  CAS  Google Scholar 

  • Warrick, J.M., Paulson, H.L., Gray-Board, G.L., Bui, Q.T., Fischbeck, K.H., Pittman, R.N., and Bonini, N.M. (1998). Expanded polyglutamine protein forms nuclear inclusions and causes neural degeneration in Drosophila. Cell 93:939–949.

    PubMed  CAS  Google Scholar 

  • Watanabe, M., Dykes-Hoberg, M., Culotta, V.C., Price, D.L., Wong, P.C., and Rothstein, J.D. (2001). Histological evidence of protein aggregation in mutant SOD1 transgenic mice and in amyotrophic lateral sclerosis neural tissues. Neurobiol. Dis. 8:933–941.

    PubMed  CAS  Google Scholar 

  • Webb, J.L., Ravikumar, B., Atkins, J., Skepper, J.N., and Rubinsztein, D.C. (2003). Alpha-Synuclein is degraded by both autophagy and the proteasome. J. Biol. Chem. 278:25009–25013.

    PubMed  CAS  Google Scholar 

  • Weissman, A.M. (2001). Themes and variations on ubiquitylation. Nat. Rev. Mol. Cell. Biol. 2:169–178.

    PubMed  CAS  Google Scholar 

  • Wellington, C.L., Ellerby, L.M., Hackam, A.S., Margolis, R.L., Trifiro, M.A., Singaraja, R., McCutcheon, K., Salvesen, G.S., Propp, S.S., Bromm, M., Rowland, K.J., Zhang, T., Rasper, D., Roy, S., Thornberry, N., Pinsky, L., Kakizuka, A., Ross, C.A., Nicholson, D.W., Bredesen, D.E.. and Hayden, M.R. (1998). Caspase cleavage of gene products associated with triplet expansion disorders generates truncated fragments containing the polyglutamine tract. J. Biol. Chem. 273:9158–9167.

    PubMed  CAS  Google Scholar 

  • Willingham, S., Outeiro, T.F., DeVit, M.J., Lindquist, S.L., and Muchowski, P.J. (2003). Yeast genes that enhance the toxicity of a mutant huntingtin fragment or alpha-synuclein. Science 302:1769–1772.

    PubMed  CAS  Google Scholar 

  • Wirths, O., Multhaup, G., Czech, C., Blanchard, V., Moussaoui, S., Tremp, G., Pradier, L., Beyreuther, K., and Bayer, T.A. (2001). Intraneuronal Abeta accumulation precedes plaque formation in beta-amyloid precursor protein and presenilin-1 double-transgenic mice. Neurosci. Lett. 306:116–120.

    PubMed  CAS  Google Scholar 

  • Wyttenbach, A., Sauvageot, O., Carmichael, J., Diaz-Latoud, C., Arrigo, A.P., and Rubinsztein, D.C. (2002). Heat shock protein 27 prevents cellular polyglutamine toxicity and suppresses the increase of reactive oxygen species caused by huntingtin. Hum. Mol. Genet. 11:1137–1151.

    PubMed  CAS  Google Scholar 

  • Yang, Y., Turner, R.S., and Gaut, J.R. (1998). The chaperone BiP/GRP78 binds to amyloid precursor protein and decreases Abeta40 and Abeta42 secretion. J. Biol. Chem. 273:25552–25555.

    PubMed  CAS  Google Scholar 

  • Yoshida, H., Yoshizawa, T., Shibasaki, F., Shoji, S., and Kanazawa, I. (2002). Chemical chaperones reduce aggregate formation and cell death caused by the truncated Machado-Joseph disease gene product with an expanded polyglutamine stretch. Neurobiol. Dis. 10:88–99.

    PubMed  CAS  Google Scholar 

  • Zhou, H., Li, S.H., and Li, X.J. (2001). Chaperone suppression of cellular toxicity of huntingtin is independent of polyglutamine aggregation. J. Biol. Chem. 276:48417–48424.

    PubMed  CAS  Google Scholar 

  • Zoghbi, H.Y., and Orr, H.T. (2000). Glutamine repeats and neurodegeneration. Annu. Rev. Neurosci. 23:217–247.

    PubMed  CAS  Google Scholar 

  • Zou, J., Guo, Y., Guettouche, T., Smith, D.F., and Voellmy, R. (1998). Repression of heat shock transcription factor HSF1 activation by HSP90 (HSP90 complex) that forms a stress-sensitive complex with HSF1. Cell 94:471–480.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wacker, J.L., Muchowski, P.J. (2006). Chaperone Suppression of Aggregated Protein Toxicity. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25919-8_8

Download citation

Publish with us

Policies and ethics