Skip to main content

Part of the book series: Protein Reviews ((PRON,volume 4))

  • 1485 Accesses

Abstract

The localization of amyloid fibril components and the cells related to the formation and resorption of the fibrils are still controversial. In this study we undertook a time-kinetic study to analyze the process of amyloid fibril deposition in the spleen of AA amyloidosis animal model immunohistochemically and ultrastructurally. Murine amyloid A (AA) amyloidosis was induced by the emulsion injection composed of Freund’s complete adjuvant and Mycobacterium butyricum. Serum amyloid A (SAA) level was the highest at 3 days after the induction and gradually decreased. The amyloid deposition was first detected in extracellular spaces in the marginal zone of the spleen at 7 days after induction. The F4/80 positive red pulp macrophages increased in number after the induction and accumulated near the amyloid deposition areas. Amyloid P component (APC) and chondroitin sulfate proteoglycan (CSPG), which are composed of amyloid fibril, were detected in the cytoplasm of F4/80 positive red pulp macrophages and ER-TR9-positive marginal zone macrophages, respectively, then localized in the amyloid deposition areas. APC was also localized in CSPG-positive and F4/80-negative cells, which might be fibroblasts at 3 days. Ultrastructural examination indicated that macrophages in the marginal zone contained lysosome-derived fibrillar structures of amyloid, and that fibroblasts extended amyloid fibrils into the extracellular area in the marginal zone. These results suggested the close association of APC-positive/ER-TR9-positive macrophages and APC-positive/CSPG-positive fibroblasts with the formation of amyloid fibrils and F4/80-positive macrophages with the resorption of the fibrils.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Benson, M.D., and Kleiner, E. (1980). Synthesis and secretion of serum amyloid protein A (SAA) by hepatocytes in mice treated with casein. J. Immunol. 124:495–499.

    PubMed  CAS  Google Scholar 

  • Birk, D.E., and Trelstad, R.L. (1984). Extracellular compartments in matrix marphogenesis: collagen fibril, bundle, and lamellar formation by corneal fibroblasts. J. Cell Biol. 99:2024–2033.

    Article  PubMed  CAS  Google Scholar 

  • Chronopoulos, S., Laird, D.W., and Ali-Khan, Z. (1994). Immunolocalization of serum amyloid A and AA amyloid in lysosomes in murine monocytoid cells: confocal and immunogold electron microscopic studies. J. Pathol. 173:361–369.

    Article  PubMed  CAS  Google Scholar 

  • Dijkstra, C.D., Van Vliet, E., Dopp, E.A., Van Der Lelij, A.A., and Kraal, G. (1985). Marginal zone macrophages identified by a monoclonal antibody: characterization of immuno-and enzyme-histochemical properties and functional capacities. Immunology 55:23–30.

    PubMed  CAS  Google Scholar 

  • Du, T., and Ali-Khan, Z. (1990). Pathogenesis of secondary amyloidosis in an alveolar hydrated cyst-mouse model: histopathology and immuno/enzyme-histochemical analysis of splenic marginal zone cells during amyloidogenesis. J. Exp. Pathol. 71:313–335.

    CAS  Google Scholar 

  • Gillmore, J.D., Lovat, L.B., Persey, M.R., Pepys, M.B., and Hawkins, P.N. (2001). Amyloid load and clinical outcome in AA amyloidosis in relation to circulating concentration of serum amyloid A protein. Lancet 358:24–29.

    Article  PubMed  CAS  Google Scholar 

  • Glenner, G.G., Terry, W.D., and Isersky, C. (1973). Amyloidosis: its nature and pathogenesis. Semin. Hematol. 10:65–86.

    PubMed  CAS  Google Scholar 

  • Inoue, S., and Kisilevsky, R. (1996). A high resolution ultrastructural study of experimental murine AA amyloid. Lab. Invest. 74:670–683.

    PubMed  CAS  Google Scholar 

  • Inoue, S., Kuroiwa, M., Ohashi, K., Hara, M., and Kisilevsky, R. (1997). Ultrastructural organization of hemodialysis-associated β2-microglobulin amyloid fibrils. Kidney Int. 52:1543–1549.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S., Kuroiwa, M., Saraiva, M.J., Guimarães, A., and Kisilevsky, R. (1998a). Ultrastructure of familial amyloid polyneuropathy amyloid fibrils: examination with high-resolution electron microscopy. J. Struct. Biol. 124:1–12.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S., Kuroiwa, M., Tan, R., and Kisilevsky, R. (1998b). A high resolution ultrastructral comparison of isolated and in situ murine AA amyloid fibrils. Amyloid Int. J. Exp. Clin. Invest. 5:99–110.

    CAS  Google Scholar 

  • Inoue, S., Kuroiwa, M., and Kisilevsky, R. (1999). Basement membranes, microfibrils and β amyloid fibrillogenesis in Alzheimer’s disease: high resolution ultrastructural findings. Brain Res. Rev. 29:218–231.

    Article  PubMed  CAS  Google Scholar 

  • Inoue, S., Kuroiwa, M., and Kisilevsky, R. (2002). AA protein in experimental murine AA amyloid fibrils: a high resolution ultrastructural and immunohistochemical study comparing aldehyde-fixed and cryofixed tissues. Amyloid Int. J. Exp. Clin. Invest. 9:115–125.

    CAS  Google Scholar 

  • Kuroiwa, M., Aoki, K., and Izumiyama, N. (2003). Histological study of experimental murine AA Amyloidosis. J. Elect. Microsc. 52:407–413.

    Article  CAS  Google Scholar 

  • Linder, E., Anders, P.F., and Natvig, J.B. (1976). Connective tissue origin of the amyloid-related protein SAA. J. Exp. Med. 144:1336–1346.

    Article  PubMed  CAS  Google Scholar 

  • Lyon, A.W., Anastassiades, T., and Kisilevsky, R. (1993). In vivo analysis of murine serum sulfate metabolism and splenic glycosaminoglycan biosynthesis during acute inflammation and amyloidosis. J. Rheumatol. 20:1108–1113.

    PubMed  CAS  Google Scholar 

  • McAdam, K.P.W.J., Elin, R.J., Sipe, J.D., and Wolff, S.M. (1978). Changes in human serum amyloid A and C-reactive protein after etiochemolanolene-induced inflammation. J. Clin. Invest. 61:390–394.

    PubMed  CAS  Google Scholar 

  • Ram, J.S., Delellis, R.A., and Glenner, G.G. (1968). Amyloid. III. A method for rapid induction of amyloidosis in mice. Int. Arch. Allergy 34:201–204.

    PubMed  CAS  Google Scholar 

  • Rysava, R., Merta, M., Tesar, V., Jirsa, M., and Zima, T. (1999). Can serum amyloid A or macrophage colony stimulating factor serve as marker of amyloid formation process? Biochem. Mol. Biol. Int. 47:845–850.

    PubMed  CAS  Google Scholar 

  • Shirahama, T., and Cohen, A.S. (1973). An analysis of the close relationship of lysosomes to early deposits of amyloid. Ultrastructural evidence in experimental mouse amyloidosis. Am. J. Pathol. 73:97–114.

    PubMed  CAS  Google Scholar 

  • Shirahama, T., and Cohen, A. S. (1975). Intralysosomal formation of amyloid fibrils. Am. J. Pathol. 81:101–116.

    PubMed  CAS  Google Scholar 

  • Sipe, J.D. (1978). Induction of the acute-phase serum protein SAA requires both RNA and protein synthesis. Br. J. Exp. Pathol. 59:305–310.

    PubMed  CAS  Google Scholar 

  • Sipe, J.D. (1994). Amyloidosis. Critical Rev. Clin. Lab Sci. 31:325–354.

    Article  CAS  Google Scholar 

  • Snow, A.D., Bramson, R., Mar, H., Wight, T.N., and Kisilevsky, R. (1991). A temporal and ultrastructural relationship between heparan sulfate proteoglycans and AA amyloid in experimental amyloidosis. J. Histochem. Cytochem. 39:1321–1330.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Yokota, T., Yamashita, Y., Ishihara, T., and Uchino, F. (1985). Ultrastructural evidence for the synthesis of serum amyloid A protein by murine hepatocytes. Lab. Invest. 52:220–223.

    PubMed  CAS  Google Scholar 

  • Takahashi, M., Yokota, T., Kawano, H., Gondo, T., Ishihara, T., and Uchino, F. (1989). Ultrastructural evidence for intracellular formation of amyloid fibrils in macrophages. Virchows Arch. [A] 415:411–419.

    Article  CAS  Google Scholar 

  • Tatsuta, E, Sipe, J.D., Shirahama, T., Skinner, M., and Cohen, A.S. (1983). Different regulatory mechanisms for serum amyloid A and serum amyloid P synthesis by cultured mouse hepatocytes. J. Biol. Chem. 258:5414–5418.

    PubMed  CAS  Google Scholar 

  • Togashi, S., Lim, S.-K., Kawano, H., Ito, S., Ishihara, T., Okada, Y., Nakano, S., Kinoshita, T., Horie, K., Episkopou, V., Gottesman, M.E., Costantini, F., Shimada, K., and Maeda, S. (1997). Serum amyloid P component enhances induction of murine amyloidosis. Lab. Invest. 77:525–531.

    PubMed  CAS  Google Scholar 

  • Trelstad, R.L., and Hayashi, K. (1979). Tendon collagen fibrillogenesis: intracellular subassemblies and cell surface changes associated with fibril growth. Dev. Biol. 71:228–242.

    Article  PubMed  CAS  Google Scholar 

  • Uchino, F., Takahashi, M., Yokota, T., and Ishihara, T. (1985). Experimental amyloidosis: role of the hepatocytes and Kupffer cells in amyloid formation. Appl. Pathol. 3:78–87.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kuroiwa, M., Aoki, K., Izumiyama, N. (2006). Immunohistological Study of Experimental Murine AA Amyloidosis. In: Uversky, V.N., Fink, A.L. (eds) Protein Misfolding, Aggregation, and Conformational Diseases. Protein Reviews, vol 4. Springer, Boston, MA. https://doi.org/10.1007/0-387-25919-8_13

Download citation

Publish with us

Policies and ethics