Skip to main content

Experimental mouse models of inflammatory bowel disease: new insights into pathogenic mechanisms

  • Chapter
Inflammatory Bowel Disease: From Bench to Bedside
  • 1348 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Elson CO, Sartor RB, Tennyson GS, Riddell RH. Experimental models of inflammatory bowel disease. Gastroenterology 1995; 109: 1344–67.

    PubMed  CAS  Google Scholar 

  2. Mosmann TR, Sad S. The expanding universe of T-cell subsets: Th1, Th2 and more. Immunol Today 1996; 17: 138–46.

    PubMed  CAS  Google Scholar 

  3. Fort MM, Lesley R, Davidson NJ et al. IL-4 exacerbates disease in a Th1 cell transfer model of colitis. J Immunol 2001; 166: 2793–800.

    PubMed  CAS  Google Scholar 

  4. Neurath MF, Fuss I, Pasparakis M et al. Predominant pathogenic role of tumor necrosis factor in experimental colitis in mice. Eur J Immunol 1997; 27: 1743–50.

    PubMed  CAS  Google Scholar 

  5. Fuss IJ, Neurath M, Boirivant M et al. Disparate CD4+ lamina propria (LP) lymphokine secretion profiles in inflammatory bowel disease. Crohn’s disease LP cells manifest increased secretion of IFN-gamma, whereas ulcerative colitis LP cells manifest increased secretion of IL-5. J Immunol 1996; 157: 1261–70.

    PubMed  CAS  Google Scholar 

  6. Bacchetta R, Bigler M, Touraine JL et al. High levels of interleukin 10 production in vivo are associated with tolerance in SCID patients transplanted with HLA mismatched hematopoietic stem cells. J Exp Med 1994; 179: 493–502.

    PubMed  CAS  Google Scholar 

  7. Groux H, O’Garra A, Bigler M et al. A CD4+ T cell subset inhibits antigen-specific T-cell responses and prevents colitis. Nature 1997; 389: 737–42.

    PubMed  CAS  Google Scholar 

  8. Santos LM, al-Sabbagh A, Londono A, Weiner HL. Oral tolerance to myelin basic protein induces regulatory TGF-beta-secreting T cells in Peyer’s patches of SJL mice. Cell Immunol 1994; 157: 439–47.

    PubMed  CAS  Google Scholar 

  9. Chen Y, Kuchroo VK, Inobe J, Hafler DA, Weiner HL. Regulatory T cell clones induced by oral tolerance: suppression of autoimmune encephalomyelitis. Science 1994; 265: 1237–40.

    PubMed  CAS  Google Scholar 

  10. Fukaura H, Kent SC, Pietrusewicz MJ, Khoury SJ, Weiner HL, Hafler DA. Induction of circulating myelin basic protein and proteolipid protein-specific transforming growth factor-beta 1-secreting Th3 T cells by oral administration of myelin in multiple sclerosis patients. J Clin Invest 1996; 98: 70–7.

    PubMed  CAS  Google Scholar 

  11. Neurath MF, Fuss I, Kelsall BL, Presky DH, Waegell W, Strober W. Experimental granulomatous colitis in mice is abrogated by induction of TGF-beta-mediated oral tolerance. J Exp Med 1996; 183: 2605–16.

    PubMed  CAS  Google Scholar 

  12. Ludviksson BR, Ehrhardt RO, Strober W. TGF-beta production regulates the development of the 2,4,6-trinitrophenol-conjugated keyhole limpet hemocyanin-induced colonic inflammation in IL-2-deficient mice. J Immunol 1997; 159: 3622–8.

    PubMed  CAS  Google Scholar 

  13. Simpson SJ, Mizoguchi E, Allen D, Bhan AK, Terhorst C. Evidence that CD4+, but not CD8+ T cells are responsible for murine interleukin-2-deficient colitis. Eur J Immunol 1995; 25: 2618–25.

    PubMed  CAS  Google Scholar 

  14. Cong Y, Weaver CT, Nguyen H, Lazenby A, Sundberg JP, Elson CO. CD8+ T cells, but not B cells inhibit enteric bacterial antigen-pecific CD4+ T cell-induced colitis. Gastroenterology 1999; 116: A690.

    Google Scholar 

  15. Fort MM, Leach MW, Rennick DM. A role for NK cells as regulators of CD4+ T cells in a transfer model of colitis. J Immunol 1998; 161: 3256–61.

    PubMed  CAS  Google Scholar 

  16. Saubermann LJ, Beck P, De Jong YP et al. Activation of natural killer T cells by alpha-γalactosylceramide in the presence of CD1d provides protection against colitis in mice. Gastroenterology 2000; 119: 119–28.

    PubMed  CAS  Google Scholar 

  17. Mizoguchi E, Mizoguchi A, Preffer FI, Bhan AK. Regulatory role of mature B cells in a murine model of inflammatory bowel disease. Int Immunol 2000; 12: 597–605.

    PubMed  CAS  Google Scholar 

  18. Blunt T, Gell D, Fox M et al. Identification of a nonsense mutation in the carboxyl-terminal region of DNA-dependent protein kinase catalytic subunit in the scid mouse. Proc Natl Acad Sci USA 1996; 93: 10285–90.

    PubMed  CAS  Google Scholar 

  19. Morrissey PJ, Charrier K, Braddy S, Liggitt D, Watson JD. CD4+ T cells that express high levels of CD45RB induce wasting disease when transferred into congenic severe combined immunodeficient mice. Disease development is prevented by cotransfer of purified CD4+ T cells. J Exp Med 1993; 178: 237–4.

    PubMed  CAS  Google Scholar 

  20. Powrie F, Leach MW, Mauze S, Caddie LB, Coffman RL. Phenotypically distinct subsets of CD4+ T cells induce or protect from chronic intestinal inflammation in C. B-17 scid mice. Int Immunol 1993; 5: 1461–71.

    PubMed  CAS  Google Scholar 

  21. Powrie F, Leach MW, Mauze S, Menon S, Caddie LB, Coffman RL. Inhibition of Th1 responses prevents inflammatory bowel disease in scid mice reconstituted with CD45RBhi CD4+ T cells. Immunity 1994; 1: 553–62.

    PubMed  CAS  Google Scholar 

  22. Rudolphi A, Bonhagen K, Reimann J. Polyclonal expansion of adoptively transferred CD4+ alpha beta T cells in the colonic lamina propria of scid mice with colitis. Eur J Immunol 1996; 26: 1156–63.

    PubMed  CAS  Google Scholar 

  23. Bregenholt S, Claesson MH. Splenic T helper cell type 1 cytokine profile and extramedullary haematopoiesis in severe combined immunodeficient (scid) mice with inflammatory bowel disease (IBD). Clin Exp Immunol 1998; 111: 166–72.

    PubMed  CAS  Google Scholar 

  24. Powrie F, Carlino J, Leach MW, Mauze S, Coffman RL. A critical role for transforming growth factor-beta but not interleukin 4 in the suppression of T helper type 1-mediated colitis by CD45RB(low) CD4+ T cells. J Exp Med 1996; 183: 2669–74.

    PubMed  CAS  Google Scholar 

  25. Asseman C, Mauze S, Leach MW, Coffman RL, Powrie F. An essential role for interleukin 10 in the function of regulatory T cells that inhibit intestinal inflammation. J Exp Med 1999; 190: 995–1004.

    PubMed  CAS  Google Scholar 

  26. Annacker O, Burlen-Defranoux O, Pimenta-Araujo R, Cumano A, Bandeira A. Regulatory CD4 T cells control the size of the peripheral activated/memory CD4 T cell compartment. J Immunol 2000; 164: 3573–80.

    PubMed  CAS  Google Scholar 

  27. Takahashi T, Tagami T, Yamazaki S et al. Immunologic self-tolerance maintained by CD25(+)CD4(+) regulatory T cells constitutively expressing cytotoxic T lymphocyte-associated antigen 4. J Exp Med 2000; 192: 303–10.

    PubMed  CAS  Google Scholar 

  28. Read S, Malmstrom V, Powrie F. Cytotoxic T lymphocyte-associated antigen 4 plays an essential role in the function of CD25(+)CD4(+) regulatory cells that control intestinal inflammation. J Exp Med 2000; 192: 295–302.

    PubMed  CAS  Google Scholar 

  29. Hagenbaugh A, Sharma S, Dubinett SM et al. Altered immune responses in interleukin 10 transgenic mice. J Exp Med 1997; 185: 2101–10.

    PubMed  CAS  Google Scholar 

  30. Aranda R, Sydora BC, McAllister PL et al. Analysis of intestinal lymphocytes in mouse colitis mediated by transfer of CD4+, CD45RBhigh T cells to SCID recipients. J Immunol 1997; 158: 3464–73.

    PubMed  CAS  Google Scholar 

  31. Picarella D, Hurlbut P, Rottman J, Shi X, Butcher E, Ringler DJ. Monoclonal antibodies specific for beta 7 integrin and mucosal addressin cell adhesion molecule-1 (MAdCAM-1) reduce inflammation in the colon of scid mice reconstituted with CD45RBhigh CD4+ T cells. J Immunol 1997; 158: 2099–106.

    PubMed  CAS  Google Scholar 

  32. Mackay F, Browning JL, Lawton P et al. Both the lymphotoxin and tumor necrosis factor pathways are involved in experimental murine models of colitis. Gastroenterology 1998; 115: 1464–75.

    PubMed  CAS  Google Scholar 

  33. De Jong YP, Comiskey M, Kalled SL et al. Chronic murine colitis is dependent on the CD154/CD40 pathway and can be attenuated by anti-CD 154 administration. Gastroenterology 2000; 119: 715 23.

    PubMed  Google Scholar 

  34. Morrissey PJ, Charrier K. Induction of wasting disease in SCID mice by the transfer of normal CD4+/CD45RBhi T cells and the regulation of this autoreactivity by CD4+/CD45RBlo T cells. Res Immunol 1994; 145: 357–62.

    PubMed  CAS  Google Scholar 

  35. Matsuda JL, Gapin L, Sydora BC, Systemic activation and antigen-driven oligoclonal expansion of T cells in a mouse model of colitis. J Immunol 2000; 164: 2797–806.

    PubMed  CAS  Google Scholar 

  36. Brimnes J, Reimann J, Mogens MH, Claessen MH. Enteric bacterial antigens activate CD4+ T cells from scid mice with inflammatory bowel disease. Eur J Immunol 2001; 31: 23–31.

    PubMed  CAS  Google Scholar 

  37. Kuhn R, Lohler J, Rennick D, Rajewsky K, Muller W. Interleukin-10-deficient mice develop chronic enterocolitis. Cell 1993; 75: 263–74.

    PubMed  CAS  Google Scholar 

  38. Sellon RK, Tonkonogy S, Schultz M et al. Resident enteric bacteria are necessary for development of spontaneous colitis and immune system activation in interleukin-10-deficient mice. Infect Immun 1998; 66: 5224–31.

    PubMed  CAS  Google Scholar 

  39. Berg DJ, Kuhn R, Rajewsky K et al. Interleukin-10 is a central regulator of the response to LPS in murine models of endotoxic shock and the Shwartzman reaction but not endotoxin tolerance. J Clin Invest 1995; 96: 2339–47.

    PubMed  CAS  Google Scholar 

  40. Davidson NJ, Leach MW, Fort MM et al. T helper cell 1-type CD4+ T cells, but not B cells, mediate colitis in interleukin 10-deficient mice. J Exp Med 1996; 184: 241–51.

    PubMed  CAS  Google Scholar 

  41. Berg D, Davidson N, Kuhn R et al. Enterocolitis and colon cancer interleukin-10-deficient mice are associated with aberrant cytokine production and CD4+ Th1-like responses. J Clin Invest 1996; 98: 1010–20.

    PubMed  CAS  Google Scholar 

  42. Rennick DM, Fort MM, Davidson NJ. Studies with IL-10-/-mice: an overview. J Leuk Biol 1997; 61: 389–96.

    CAS  Google Scholar 

  43. Davidson NJ, Hudak SA, Lesley RE, Menon S, Leach MW, Rennick DM. IL-12, but not IFN-gamma, plays a major role in sustaining the chronic phase of colitis in IL-10-deficient mice. J Immunol 1998; 161: 3143–9.

    PubMed  CAS  Google Scholar 

  44. Brandwein SL, McCabe RP, Cong Y et al. Spontaneously colitic C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial flora. J Immunol 1997; 159: 44–52.

    PubMed  CAS  Google Scholar 

  45. Seibold F, Brandwein S, Simpson S, Terhorst C, Elson CO. pANCA represents a cross-reactivity to enteric bacterial antigens. J Clin Immunol 1998; 18: 153–60.

    PubMed  CAS  Google Scholar 

  46. Bristol IJ, Farmer MA, Cong Y et al. Heritable susceptibility for colitis in mice induced by IL-10 deficiency. Inflam Bowel Dis 2000; 6: 290–302.

    CAS  Google Scholar 

  47. Farmer MA, Leiter EH, Churchill GA, Sundberg JP, Elson CO. Complex interactions among modifier genes controlling colitis severity in IL-10 deficient mice. Gastroenterology 2001; 120: A36.

    Google Scholar 

  48. Spencer SD, Di Marco F, Hooley J et al. The orphan receptor CRF2-4 is an essential subunit of the interleukin 10 receptor. J Exp Med 1998; 187: 571–8.

    PubMed  CAS  Google Scholar 

  49. Kundig TM, Schorle H, Bachmann MF, Hengartner H, Zinkernagel RM, Horak I. Immune responses in interleukin-2-deficient mice. Science 1993; 262: 1059–61.

    PubMed  CAS  Google Scholar 

  50. Ma A, Datta M, Margosian E, Chen J, Horak I. T cells, but not B cells, are required for bowel inflammation in interleukin 2-deficient mice. J Exp Med 1995; 182: 1567–72.

    PubMed  CAS  Google Scholar 

  51. Kramer S, Schimpl A, Hunig T. Immunopathology of interleukin (IL) 2-deficient mice: thymus dependence and suppression by thymus-dependent cells with an intact IL-2 gene. J Exp Med 1995; 182: 1769–76.

    PubMed  CAS  Google Scholar 

  52. Sadlack B, Lohler J, Schorle H et al. Generalized autoimmune disease in interleukin-2-deficient mice is triggered by an uncontrolled activation and proliferation of CD4+ T cells. Eur J Immunol 1995; 25: 3053–9.

    PubMed  CAS  Google Scholar 

  53. Ehrhardt RO, Ludviksson BR, Gray B, Neurath M, Strober W. Induction and prevention of colonic inflammation in IL-2-deficient mice. J Immunol 1997; 158: 566–73.

    PubMed  CAS  Google Scholar 

  54. Ludviksson BR, Strober W, Nishikomori R, Hasan SK, Ehrhardt RO. Administration of mAb against alpha E beta 7 prevents and ameliorates immunization-induced colitis in IL-2 / mice. J Immunol 1999; 162: 4975 82.

    PubMed  Google Scholar 

  55. Kneitz B, Herrmann T, Yonehara S, Schimpl A. Normal clonal expansion but impaired Fas-mediated cell death and anergy induction in interleukin-2-deficient mice. Eur J Immunol 1995; 25: 2572–7.

    PubMed  CAS  Google Scholar 

  56. Poussier P, Ning T, Chen J, Banerjee D, Julius M. Intestinal inflammation observed in IL-2R/IL-2 mutant mice is associated with impaired intestinal T lymphopoiesis. Gastroenterology 2000; 118: 880–91.

    PubMed  CAS  Google Scholar 

  57. Papiernik M, de Moraes ML, Pontoux C, Vasseur F, Penit C. Regulatory CD4 T cells: expression of IL-2R alpha chain, resistance to clonal deletion and IL-2 dependency. Int Immunol 1998; 10: 371–8.

    PubMed  CAS  Google Scholar 

  58. Sakaguchi S, Toda M, Asano M, Itoh M, Morse SS, Sakaguchi N. T cell-mediated maintenance of natural self-tolerance: its breakdown as a possible cause of various autoimmune diseases. J Autoimmun 1996; 9: 211–20.

    PubMed  CAS  Google Scholar 

  59. Contractor NV, Bassiri H, Reya T et al. Lymphoid hyperplasia, autoimmunity, and compromised intestinal intraepithelial lymphocyte development in colitis-free gnotobiotic IL-2-deficient mice. J Immunol 1998; 160: 385–94.

    PubMed  CAS  Google Scholar 

  60. Mahler M, Serreze D, Evans R, Linder CD, Leiter EH, Sundberg JP. IL-2tml Hor, an interleukin-2 gene targeted mutation: the Jackson Laboratory, Bar Harbor, ME; Fall 1996. Report No. 467.

    Google Scholar 

  61. Wang B, Biron C, She J et al. A block in both early T lymphocyte and natural killer cell development in transgenic mice with high-copy numbers of the human CD3E gene. Proc Natl Acad Sci USA 1994; 91: 9402–6.

    PubMed  CAS  Google Scholar 

  62. Hollander GA, Wang B, Nichogiannopoulou A et al. Developmental control point in induction of thymic cortex regulated by a subpopulation of prothymocytes. Nature 1995; 373: 350–3.

    PubMed  CAS  Google Scholar 

  63. Hollander GA, Simpson SJ, Mizoguchi E et al. Severe colitis in mice with aberrant thymic selection. Immunity 1995; 3: 27–38.

    PubMed  CAS  Google Scholar 

  64. Velkamp C, Tonkonogy SL, De Jong YP et al. Continuous stimulation by normal luminal bacteria is essential for the development and perpetuation of colitis in Tg epsilon 26 mice. Gastroenterology 2001; 120: 900–13.

    Google Scholar 

  65. Simpson SJ, De Jong YP, Shah SA et al. Consequences of Fas-ligand and perforin expression by colon T cells in a mouse model of inflammatory bowel disease. Gastroenterology 1998; 115: 849–55.

    PubMed  CAS  Google Scholar 

  66. Simpson SJ, Hollander GA, Mizoguchi E et al. Expression of pro-inflammatory cytokines by TCR alpha beta+ and TCR gamma delta+ T cells in an experimental model of colitis. Eur J Immunol 1997; 27: 17–25.

    PubMed  CAS  Google Scholar 

  67. Mombaerts P, Mizoguchi E, Grusby MJ, Glimcher LH, Bhan AK, Tonegawa S. Spontaneous development of inflammatory bowel disease in T cell receptor mutant mice. Cell 1993; 75: 1–20.

    Google Scholar 

  68. Mizoguchi E, Mizoguchi A, Bhan AK. Role of cytokines in the early stages of chronic colitis in TCR alpha-mutant mice. Lab Invest 1997; 76: 385–97.

    PubMed  CAS  Google Scholar 

  69. Mizoguchi A, Mizoguchi E, Chiba C et al. Cytokine imbalance and autoantibody production in T cell receptor-alpha mutant mice with inflammatory bowel disease. J Exp Med 1996; 183: 847–56.

    PubMed  CAS  Google Scholar 

  70. Mombaerts P, Mizoguchi E, Ljunggren HG et al. Peripheral lymphoid development and function in TCR mutant mice. Int Immunol 1994; 6: 1061–70.

    PubMed  CAS  Google Scholar 

  71. Das KM, Dasgupta A, Mandal A, Geng X. Autoimmunity to cytoskeletal protein tropomyosin. A clue to the pathogenetic mechanism for ulcerative colitis. J Immunol 1993; 150: 2487–93.

    PubMed  CAS  Google Scholar 

  72. Bhan AK, Mizoguchi E, Smith RN, Mizoguchi A. Colitis in transgenic and knockout animals as models of human inflammatory bowel disease. Immunol Rev 1999; 169: 195–207.

    PubMed  CAS  Google Scholar 

  73. Takahashi I, Kiyono H, Hamada S. A CD4+ T-cell population mediates development of inflammatory bowel disease in T-cell receptor alpha-deficient mice. Gastroenterology 1997; 112: 1876–82.

    PubMed  CAS  Google Scholar 

  74. Mizoguchi A, Mizoguchi E, Saubermann LJ, Higaki K, Blumberg RS, Bhan AK. Limited CD4 T-cell diversity associated with colitis in T-cell receptor alpha mutant mice requires a T helper 2 environment. Gastroenterology 2000; 119: 983–95.

    PubMed  CAS  Google Scholar 

  75. Dianda L, Hanby AM, Wright NA, Sebesteny A, Hayday AC, Owen MJ. T cell receptor-alpha beta-deficient mice fail to develop colitis in the absence of a microbial environment. Am J Pathol 1997; 150: 91–7.

    PubMed  CAS  Google Scholar 

  76. Mizoguchi A, Mizoguchi E, Chiba C, Bhan AK. Role of appendix in the development of inflammatory bowel disease in TCR-alpha mutant mice. J Exp Med 1996; 184: 707–15.

    PubMed  CAS  Google Scholar 

  77. Mizoguchi A, Mizoguchi E, Tonegawa S, Bhan AK. Alteration of a polyclonal to an oligoclonal immune response to cecal aerobic bacterial antigens in TCRα mutant mice with inflammatory bowel disease. Int Immunol 1996; 8: 1387–94.

    PubMed  CAS  Google Scholar 

  78. Mizoguchi A, Mizoguchi E, Bhan AK. The critical role of interleukin 4 but not interferon gamma in the pathogenesis of colitis in T-cell receptor alpha mutant mice. Gastroenterology 1999; 116: 320–6.

    PubMed  CAS  Google Scholar 

  79. Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK. Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J Exp Med 1997; 186: 1749–56.

    PubMed  CAS  Google Scholar 

  80. Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK. Suppressive role of B cells in chronic colitis of T cell receptor α mutant mice. J Exp Med 1997; 186: 1749–56.

    PubMed  CAS  Google Scholar 

  81. Kulkarni AB, Ward JM, Yaswen L, Transforming growth factor-beta 1 null mice. An animal model for inflammatory disorders. Am J Pathol 1995; 146: 264–75.

    PubMed  CAS  Google Scholar 

  82. Boivin GP, O’Toole BA, Orsmby IE et al. Onset and progression of pathological lesions in transforming growth factor-beta 1-deficient mice. Am J Pathol 1995; 146: 276–88.

    PubMed  CAS  Google Scholar 

  83. Boivin GP, Ormsby I, Jones-Carson J, O’Toole BA, Doetschman T. Germ-free and barrier-raised TGF beta 1-deficient mice have similar inflammatory lesions. Transgenic Res 1997; 6: 197–202.

    PubMed  CAS  Google Scholar 

  84. Letterio JJ, Geiser AG, Kulkarni AB et al Autoimmunity associated with TGF-beta l-deficiency in mice is dependent on MHC class II antigen expression. J Clin Invest 1996; 98: 2109–19.

    PubMed  CAS  Google Scholar 

  85. Diebold RJ, Eis MJ, Yin M et al. Early-onset multifocal inflammation in the transforming growth factor beta 1-null mouse is lymphocyte mediated. Proc Natl Acad Sci USA 1995; 92: 12215–19.

    PubMed  CAS  Google Scholar 

  86. Gorelik L, Flavell RA. Abrogation of TGFbeta signaling in T cells leads to spontaneous T cell differentiation and autoimmune disease. Immunity 2000; 12: 171–81.

    PubMed  CAS  Google Scholar 

  87. Lucas PJ, Kim SJ, Melby SJ, Gress RE. Disruption of T cell homeostasis in mice expressing a T cell-specific dominant negative transforming growth factor beta II receptor. J Exp Med 2000; 191: 1187–96.

    PubMed  CAS  Google Scholar 

  88. Yang X, Letterio JJ, Lechleider RJ et al. Targeted disruption of SMAD3 results in impaired mucosal immunity and diminished T cell responsiveness to TGF-beta. EMBO J 1999; 18: 1280–91.

    PubMed  CAS  Google Scholar 

  89. Watanabe M, Ueno Y, Yajima T et al. Interleukin 7 is produced by human intestinal epithelial cells and regulates the proliferation of intestinal mucosal lymphocytes. J Clin Invest 1995; 95: 2945–53.

    PubMed  CAS  Google Scholar 

  90. Fujihashi K, Kawabata S, Hiroi T, Interleukin 2 (IL-2) and interleukin 7 (IL-7) reciprocally induce IL-7 and IL-2 receptors on gamma delta T-cell receptor-positive intraepithelial lymphocytes. Proc Natl Acad Sci USA 1996; 93: 3613–8.

    PubMed  CAS  Google Scholar 

  91. Fujihashi K, McGhee JR, Yamamoto M, Peschon JJ, Kiyono H. An interleukin-7 internet for intestinal intraepithelial T cell development: knockout of ligand or receptor reveal differences in the immunodeficient state. Eur J Immunol 1997; 27: 2133–8.

    PubMed  CAS  Google Scholar 

  92. Watanabe M, Ueno Y, Yajima T et al. Interleukin 7 transgenic mice develop chronic colitis with decreased interleukin 7 protein accumulation in the colonic mucosa. J Exp Med 1998; 187: 389–402.

    PubMed  CAS  Google Scholar 

  93. Targan SR, Hanauer SB, van Deventer SJ et al. A short-term study of chimeric monoclonal antibody cA2 to tumor necrosis factor alpha for Crohn’s disease. Crohn’s Disease cA2 Study Group. N Engl J Med 1997; 337: 1029–35.

    PubMed  CAS  Google Scholar 

  94. Kontoyiannis D, Pasparakis M, Pizarro TT, Cominelli F, Kollias G. Impaired on/off regulation of TNF biosynthesis in mice lacking TNF AU-rich elements: implications for joint and gut-associated immunopathologies. Immunity 1999; 10: 387–98.

    PubMed  CAS  Google Scholar 

  95. Kollias G, Douni E, Kassiotis G, Kontoyiannis D. On the role of tumor necrosis factor and receptors in models of multiorgan failure, rheumatoid arthritis, multiple sclerosis and inflammatory bowel disease. Immunol Rev 1999; 169: 175–94.

    PubMed  CAS  Google Scholar 

  96. Lee EG, Boone DL, Chai S et al. Failure to regulate TNF-induced NF-kappaB and cell death responses in A20-defi-cient mice. Science 2000; 289: 2350–4.

    PubMed  CAS  Google Scholar 

  97. Byrne FR, Whoriskey JS, Sarmiento U et al. Transgenic mice over-expressing the B7 related protein-1 (B7RP-1) develop an intestinal pathology similar to human Crohn’s disease. A new mouse model of inflammatory bowel disease. Gastroenterology 2001: A47.

    Google Scholar 

  98. Foy TM, Aruffo A, Bajorath J, Buhlmann JE, Noelle RJ. Immune regulation by CD40 and its ligand GP39. Annu Rev Immunol 1996; 14: 591–617.

    PubMed  CAS  Google Scholar 

  99. Grewal IS, Flavell RA. CD40 and CD154 in cell-mediated immunity. Annu Rev Immunol 1998; 16: 111–35.

    PubMed  CAS  Google Scholar 

  100. Clegg CH, Rulffes JT, Haugen HS et al. Thymus dysfunction and chronic inflammatory disease in gp39 transgenic mice. Int Immunol 1997; 9: 1111–22.

    PubMed  CAS  Google Scholar 

  101. Cong Y, Weaver CT, Lazenby A, Elson CO. Colitis induced by enteric bacterial antigen-specific CD4+ T cells requires CD40-CD40 ligand interactions for a sustained increase in mucosal IL-12. J Immunol 2000; 165: 2173–82.

    PubMed  CAS  Google Scholar 

  102. Sundberg JP, Elson CO, Bedigian H, Birkenmeier EH. Spontaneous, heritable colitis in a new substrain of C3H/HeJ mice. Gastroenterology 1994; 107: 1726–35.

    PubMed  CAS  Google Scholar 

  103. McCabe RP, Sharmanov A, Birkenmeier E, Sundberg J, Elson CO. Mucosal immune abnormalities in C3H/HeJBir mice with susceptibility to colitis. Gastroenterology 1994; 106: A731.

    Google Scholar 

  104. Ni J, Chen SF, Hollander D. Immunological abnormality in C3H/HeJ mice with heritable inflammatory bowel disease. Cell Immunol 1996; 169: 7–15.

    PubMed  CAS  Google Scholar 

  105. Cong Y, Brandwein SL, McCabe RP et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998; 187: 855–64.

    PubMed  CAS  Google Scholar 

  106. Cong Y, Weaver CT, Lazenby A, Elson CO. T-regulatory-1 (Tr1) cells that prevent CD4+ T cell colitis inhibit the antigen-presenting function and IL-12 production of den dritic cells. Gastroenterology 2001; 120: A38.

    Google Scholar 

  107. Mahler M, Bristol IJ, Leiter EH et al. Differential susceptibility of inbred mouse strains to dextran sulfate sodium-induced colitis. Am J Physiol 1998; 274: G544–51.

    PubMed  CAS  Google Scholar 

  108. Matsumoto S, Okabe Y, Setoyama H et al. Inflammatory bowel disease-like enteritis and caecitis in a senescence accelerated mouse PI /Yit strain. Gut 1998; 43: 71–8.

    Article  PubMed  CAS  Google Scholar 

  109. Takeda K, Clausen BE, Kaisho T et al. Enhanced Th1 activity and development of chronic enterocolitis in mice devoid of Stat3 in macrophages and neutrophils. Immunity 1999; 10: 39–49.

    PubMed  CAS  Google Scholar 

  110. Kosiewicz MM, Nast CC, Krishnan A et al. Th1-type responses mediate spontaneous ileitis in a novel murine model of Crohn’s disease. J Clin Invest 2001; 107: 695–702.

    PubMed  CAS  Google Scholar 

  111. Eckmann L, Kagnoff MF, Fierer J. Epithelial cells secrete the chemokine interleukin-8 in response to bacterial entry. Infect Immun 1993; 61: 4569–74.

    PubMed  CAS  Google Scholar 

  112. McCormick BA, Colgan SP, Delp-Archer C, Miller SI, Madara JL. Salmonella typhimurium attachment to human intestinal epithelial monolayers: transcellular signalling to subepithelial neutrophils. J Cell Biol 1993; 123: 895–907.

    PubMed  CAS  Google Scholar 

  113. Hugot J-P, Chamaillard M, Zouali H et al. Association of NOD2 leucine-rich repeat variants with susceptibility to Crohn’s disease. Nature 2001; 411: 599–603.

    PubMed  CAS  Google Scholar 

  114. Ogura Y, Bonen DK, Inohara N et al. A frameshift mutation in NOD2 associated with susceptibility to Crohn’s disease. Nature 2001; 411: 603–606.

    PubMed  CAS  Google Scholar 

  115. Katz KD, Hollander D, Vadheim CM et al. Intestinal permeability in patients with Crohn’s disease and their healthy relatives. Gastroenterology 1989; 97: 927–31.

    PubMed  CAS  Google Scholar 

  116. Toy LS, Yio XY, Lin A, Honig S, Mayer L. Defective expression of gpl80, a novel CD8 ligand on intestinal epithelial cells, in inflammatory bowel disease. J Clin Invest 1997; 100: 2062–71.

    PubMed  CAS  Google Scholar 

  117. Madara J, Stafford J. Interferon-γamma directly affects barrier function of cultured intestinal epithelial monolayers. J Clin Invest 1989; 83: 724.

    PubMed  CAS  Google Scholar 

  118. Dieleman LA, Elson CO, Tennyson GS, Beagley KW. Kinetics of cytokine expression during healing of acute colitis in mice. Am J Physiol 1996; 34: G 130–6.

    Google Scholar 

  119. Hermiston ML, Gordon JL Inflammatory bowel disease and adenomas in mice expressing a dominant negative N-cadherin. Science 1995; 270: 1203–7.

    PubMed  CAS  Google Scholar 

  120. Panwala CM, Jones JC, Viney JL. A novel model of inflammatory bowel disease: mice deficient for the multiple drug resistance gene, mdrla, spontaneously develop colitis. J Immunol 1998; 161: 5733–44.

    PubMed  CAS  Google Scholar 

  121. Rudolph U, Finegold MJ, Rich SS et al. Ulcerative colitis and adenocarcinoma of the colon in G alpha i2-deficient mice. Nat Genet 1995; 10: 143–50.

    PubMed  CAS  Google Scholar 

  122. Hornquist CE, Lu X, Rogers-Fani PM et al. G(alpha)i2-deficient mice with colitis exhibit a local increase in memory CD4+ T cells and proinflammatory Th1-type cytokines. J Immunol 1997; 158: 1068–77.

    PubMed  CAS  Google Scholar 

  123. Ohman L, Franzen L, Rudolph U, Harriman GR, Hultgren-Hornquist E. Immune activation in the intestinal mucosa before the onset of colitis in Galphai2-deficient mice. Scand J Immunol 2000; 52: 80–90.

    PubMed  CAS  Google Scholar 

  124. Mashimo H, Wu DC, Podolsky DK, Fishman MC. Impaired defense of intestinal mucosa in mice lacking intest inaltrefoil factor. Science 1996; 274: 262–5.

    PubMed  CAS  Google Scholar 

  125. Baribault H, Penner J, Iozzo RV, Wilson-Heiner M. Colorectal hyperplasia and inflammation in keratin 8-deficient FVB/N mice. Genes Devel 1994; 8: 2964–73.

    PubMed  CAS  Google Scholar 

  126. Magin TM, Schroder R, Leitgeb S et al. Lessons from keratin 18 knockout mice: formation of novel keratin filaments, secondary loss of keratin 7 and accumulation of liver-specific keratin 8-positive aggregates. J Cell Biol 1998; 140: 1441–51.

    PubMed  CAS  Google Scholar 

  127. Okayasu I, Hatakeyama S, Yamada M, Ohkusa T, Inagaki Y, Nakaya R. A novel method in the induction of reliable experimental acute and chronic ulcerative colitis in mice. Gastroenterology 1990; 98: 694–702.

    PubMed  CAS  Google Scholar 

  128. Cooper HS, Murthy SN, Shah RS, Sedergran DJ. Clinicopathologic study of dextran sulfate sodium experimental murine colitis. Lab Invest 1993; 69: 238–49.

    PubMed  CAS  Google Scholar 

  129. Yamada M, Ohkusa T, Okayasu I. Occurrence of dysplasia and adenocarcinoma after experimental chronic ulcerative colitis in hamsters induced by dextran sulphate sodium. Gut 1992; 33: 1521–7.

    PubMed  CAS  Google Scholar 

  130. Hirono I, Kuhara K, Hosaka S, Tomizawa S, Goldberg L. Induction of intestinal tumors in rats by dextran sulfate sodium. J Natl Cancer Inst 1981; 66: 579–83.

    PubMed  CAS  Google Scholar 

  131. Dieleman LA, Ridwan BU, Tennyson GS, Beagley KW, Bucy RP, Elson CO. Dextran sulfate sodium-induced colitis occurs in severe combined immunodeficient mice. Gastroenterology 1994; 107: 1643–52.

    PubMed  CAS  Google Scholar 

  132. Mahler M, Bristol IJ, Sundberg JP et al. Genetic analysis of susceptibility to dextran sulfate sodium-induced colitis in mice. Genomics 1999; 55: 147–56.

    PubMed  CAS  Google Scholar 

  133. Morris GP, Beck PL, Herridge MS, Depew WT, Szewczuk MR, Wallace JL. Hapten-induced model of chronic inflammation and ulceration in the rat colon. Gastroenterology 1989; 96: 795–803.

    PubMed  CAS  Google Scholar 

  134. Neurath MF, Fuss I, Kelsall BL, Stuber E, Strober W. Antibodies to interleukin 12 abrogate established experimental colitis in mice. J Exp Med 1995; 182: 1281–90.

    PubMed  CAS  Google Scholar 

  135. Elson CO, Beagley KW, Sharmanov AT, Hapten-induced model of murine inflammatory bowel disease — mucosal immune responses and protection by tolerance. J Immunol 1996; 157: 2174–85.

    PubMed  CAS  Google Scholar 

  136. Brandtzaeg P, Valnes K, Scott H, Rognum TO, Bjerke K, Baklien K. The human gastrointestinal secretory system in health and disease. Scand J Gastroenterol 1985; 20: 17–38.

    Google Scholar 

  137. Kelsall BL, Stuber E, Neurath M, Strober W. Interleukin-12 production by dendritic cells. The role of CD40-CD40L interactions in Th1 T-cell responses. Ann NY Acad Sci 1996; 795: 116–26.

    PubMed  CAS  Google Scholar 

  138. Duchmann R, Schmitt E, Knolle P, Meyer zum Buschen-felde KH, Neurath M. Tolerance towards resident intestinal flora in mice is abrogated in experimental colitis and restored by treatment with interleukin-10 or antibodies to interleukin-12. Eur J Immunol 1996; 26: 934–8.

    PubMed  CAS  Google Scholar 

  139. Neurath MF, Pettersson S, Meyer Zum Buuschenfeld K-H, Strober W. Local administration of antisense phosphorothionate oligonucleotides to the p65 subunit of NFkB abrogates established experimental colitis in mice. Nature Med 1996; 2: 998–1004.

    PubMed  CAS  Google Scholar 

  140. Hammer RE, Maika SD, Richardson JA, Tang JP, Taurog JD. Spontaneous inflammatory disease in transgenic rats expressing HLA-B27 and human beta 2m: an animal model of HLA-B27-associated human disorders. Cell 1990; 63: 1099–112.

    PubMed  CAS  Google Scholar 

  141. Breban M, Hammer RE, Richardson JA, Taurog JD. Transfer of the inflammatory disease of HLA-B27 transgenic rats by bone marrow engraftment. J Exp Med 1993; 178: 1607–16.

    PubMed  CAS  Google Scholar 

  142. Taurog JD, Richardson JA, Croft JT et al. The germfree state prevents development of gut and joint inflammatory disease in HLA-B27 transgenic rats. J Exp Med 1994; 180: 2359–64.

    PubMed  CAS  Google Scholar 

  143. Rath HC, Herfarth HH, Ikeda JS et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98: 945–53.

    Article  PubMed  CAS  Google Scholar 

  144. Snapper SB, Rosen FS, Mizoguchi E et al. Wiskott-Aldrich syndrome protein-deficient mice reveal a role for WASP in T but not B cell activation. Immunity 1998; 9: 81–91.

    PubMed  CAS  Google Scholar 

  145. Koh WP, Chan E, Scott K, McCaughan G, France M, Fazekas de St Groth B. TCR-mediated involvement of CD4+ transgenic T cells in spontaneous inflammatory bowel disease in lymphopenic mice. J Immunol 1999; 162: 7208–16.

    PubMed  CAS  Google Scholar 

  146. Miller AM, Elliot PR, Connell W, Desmond PV, d’Apice AJ. A novel model of ulcerative colitis based on genetic manipulation of the glycosylation of colonic mucins. Gas-troenterology 2000; 118: A687.

    Article  Google Scholar 

  147. Kalliomaki M, Salminen S, Arvilommi H, Kero P, Koskinen P, Isolauri E. Probiotics in primary prevention of atopic disease: a randomized placebo-controlled trial. Lancet 2001; 357: 1076–9.

    PubMed  CAS  Google Scholar 

  148. Moore WEC, Holdeman LV. Human fecal flora: the normal flora of 20 Japanese-Hawaians. Appl Microbiol 1974; 27: 961–79.

    PubMed  CAS  Google Scholar 

  149. Crabbe PA, Bazin H, Eyssen H, Heremans JF. The normal microbial flora as a major stimulus for proliferation of plasma cells synthesizing IgA in the gut. The germ-free intestinal tract. Int Arch Allergy 1968; 34: 362–75.

    PubMed  CAS  Google Scholar 

  150. Okada Y, Setoyama H, Matsumoto S et al. Effects of fecal microorganisms and their chloroform-resistant variants derived from mice, rats, and humans on immunological and physiological characteristics of the intestines of ex-γermfree mice. Infect Immun 1994; 62: 5442–6.

    PubMed  CAS  Google Scholar 

  151. Klaasen HL, Koopman JP, Van den Brink ME, Bakker MH, Poelma FG, Beynen AC. Intestinal, segmented, filamentous bacteria in a wide range of vertebrate species. Lab Anim 1993; 27: 141–50.

    PubMed  CAS  Google Scholar 

  152. Klaasen HL, Van der Heijden PJ, Stok W et al. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect Immun 1993; 61: 303–6.

    PubMed  CAS  Google Scholar 

  153. Umesaki Y, Okada Y, Matsumoto S, Imaoka A, Setoyama H. Segmented filamentous bacteria are indigenous intestinal bacteria that activate intraepithelial lymphocytes and in-duce MHC class II molecules and fucosyl asialo GM1 glycolipids on the small intestinal epithelial cells in the ex-γerm-free mouse. Microb Immunol 1995; 39: 555–62.

    CAS  Google Scholar 

  154. Klapproth JM, Donnenberg MS, Abraham JM, James SP. Products of enteropathogenic E. coli inhibit lymphokine production by gastrointestinal lymphocytes. Am J Physiol 1996; 271: G841–8.

    PubMed  CAS  Google Scholar 

  155. Klapproth JM, Donnenberg MS, Abraham JM, Mobley HL, James SP. Products of enteropathogenic Escherichia coli inhibit lymphocyte activation and lymphokine production. Infect Immun 1995; 63: 2248–54.

    PubMed  CAS  Google Scholar 

  156. Neish AS, Gewirtz AT, Zeng H et al. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination. Science 2000; 289: 1560–3.

    PubMed  CAS  Google Scholar 

  157. Madsen KL, Doyle JS, Jewell LD, Tavernini MM, Fedorak RN. Lactobacillus species prevents colitis in interleukin 10 gene-deficient mice. Gastroenterology 1999; 116: 1107–14.

    PubMed  CAS  Google Scholar 

  158. Schultz M, Sartor RB. Probiotics and inflammatory bowel diseases. Am J Gastroenterol 2000; 95(Suppl. 1): S19–21.

    PubMed  CAS  Google Scholar 

  159. Steidler L, Hans W, Schotte L et al. Treatment of murine colitis by Lactococcus lactis secreting interleukin-10. Science 2000; 289: 1352–5.

    PubMed  CAS  Google Scholar 

  160. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 1995; 102: 448–55.

    Article  PubMed  CAS  Google Scholar 

  161. Wirtz S, Finotto S, Kanzler S et al. Cutting edge: chronic intestinal inflammation in STAT-4 transgenic mice: characterization of disease and adoptive transfer by TNF-plus IFN-gamma-producing CD4(+) T cells that respond to bacterial antigens. J Immunol 1999; 162: 1884–8.

    PubMed  CAS  Google Scholar 

  162. Berg DJ, Weinstock J, Lynch R. Rapid induction of inflammatory bowel disease in NSAID-treated IL-10-/-mice. Gastroenterology 2001; 120: A685.

    Google Scholar 

  163. Sadlack B, Merz H, Schorle H, Schimpl A, Feller AC, Horak I. Ulcerative colitis-like disease in mice with a disrupted interleukin-2 gene. Cell 1993; 75: 253–61.

    PubMed  CAS  Google Scholar 

  164. Willerford D, Chen J, Ferry J, Davidson L, Ma A, Alt F. Interleukin-2 receptor alpha chain regulates the size and content of the peripheral lymphoid compartment. Immunity 1995; 3: 521–30.

    PubMed  CAS  Google Scholar 

  165. Shull MM, Ormsby I, Kier AB et al. Targeted disruption of the mouse transforming growth factor-beta 1 gene results in multifocal inflammatory disease. Nature 1992; 359: 693–9.

    PubMed  CAS  Google Scholar 

  166. Rudolph U, Finegold MJ, Rich SS et al. G(i2)alpha protein deficiency: A model for inflammatory bowel disease. J Clin Immunol 1995; 15(Suppl 6.): S101–5.

    Google Scholar 

  167. Madara JL, Podolsky DK, King NW, Sehgal PK, Moore R, Winter HS. Characterization of spontaneous colitis in cotton-top tamarins (Saguinus oedipus) and its response to sulfasalazine. Gastroenterology 1985; 88: 13–9.

    PubMed  CAS  Google Scholar 

  168. Neurath M, Fuss I, Strober W. TNBS-colitis. Int Rev Immunol 2000; 19: 51–62.

    PubMed  CAS  Google Scholar 

  169. Boirivant M, Fuss IJ, Chu A, Strober W Oxazolone colitis: a murine model of T helper cell type 2 colitis treatable with antibodies to interleukin 4. J Exp Med 1998; 188: 1929–39.

    PubMed  CAS  Google Scholar 

  170. Sartor RB, Cromartie WJ, Powell DW, Schwab JH. Granulomatous enterocolitis induced in rats by purified bacterial cell wall fragments. Gastroenterology 1985; 89: 587–95.

    PubMed  CAS  Google Scholar 

  171. Sartor RB, Bender DE, Allen JB et al. Chronic experimental enterocolitis and extraintestinal inflammation are T lymphocyte dependent. Gastroenterology 1993; 104: A775.

    Google Scholar 

  172. Sartor RB, Bender DE, Holt LC. Susceptibility of inbred rat strains to intestinal inflammation induced by indomethacin. Gastroenterology 1992; 102: A690.

    Google Scholar 

  173. Taurog JD, Maika SD, Simmons WA, Breban M, Hammer RE. Susceptibility to inflammatory disease in HLA-B27 transgenic rat lines correlates with the level of B27 expression. J Immunol 1993; 150: 4168–78.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Elson, C.O., Weaver, C.T. (2003). Experimental mouse models of inflammatory bowel disease: new insights into pathogenic mechanisms. In: Targan, S.R., Shanahan, F., Karp, L.C. (eds) Inflammatory Bowel Disease: From Bench to Bedside. Springer, Boston, MA. https://doi.org/10.1007/0-387-25808-6_4

Download citation

  • DOI: https://doi.org/10.1007/0-387-25808-6_4

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25807-2

  • Online ISBN: 978-0-387-25808-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics