Skip to main content

Antibodies in the exploration of inflammatory bowel disease pathogenesis and disease stratification

  • Chapter
Inflammatory Bowel Disease: From Bench to Bedside

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zinkernagel RM, Bachmann MF, Kundig TM, Oehen S, Pirchet H, Hengartner H. On immunological memory. Annu Rev Immunol 1996; 14: 333–67.

    PubMed  CAS  Google Scholar 

  2. Litman GW, Anderson MK, Rast JP. Evolution of antigen binding receptors. Annu Rev Immunol 1999; 17: 109–47.

    PubMed  CAS  Google Scholar 

  3. Matzinger P. Tolerance, danger, and the extended family. Annu Rev Immunol 1994; 12: 991–1045.

    PubMed  CAS  Google Scholar 

  4. Hoffmann JA, Kafatos FC, Janeway CA, Ezekowitz RAB. Phylogenetic perspectives in innate immunity. Science 1999; 284: 1313–18.

    PubMed  CAS  Google Scholar 

  5. Blanchard TG, Czinn SJ, Nedrud JG. Host response and vaccine development to Helicobacter pylori infection. Curr Top Microbiol Immunol 1999; 241: 181–213.

    PubMed  CAS  Google Scholar 

  6. Covacci A, Telford JL, Del Giudice G, Parsonnet J, Rappuoli R. Helicobacter pylori virulence and genetic geography. Science 1999; 284: 1328–33.

    PubMed  CAS  Google Scholar 

  7. Yuk MH, Harvill ET, Cotter PA, Miller JF. Modulation of host immune responses, induction of apoptosis and inhibition of NF-kappaB activation by the Bordetella type HI secretion system. Mol Microbiol 2000; 35: 991–1004.

    PubMed  CAS  Google Scholar 

  8. Sousa CR, Hieny S, Scharton-Kersten T et al. In vivo microbial stimulation induces rapid CD40 ligand-independent production of interleukin 12 by dendritic cells and their redistribution to T cell areas [See comments]. J Exp Med 1997; 186: 1819–29.

    Google Scholar 

  9. Fearon DT, Locksley RM. Elements of immunity: the instructive role of innate immunity in the acquired immune response. Science 1996; 272: 50–4.

    PubMed  CAS  Google Scholar 

  10. Blaser MJ, Miller RA, Lacher J, Singleton JW. Patients with active Crohn’s disease have elevated serum antibodies to antigens of seven enteric bacterial pathogens. Gastroenterology 1984; 87: 888–94.

    PubMed  CAS  Google Scholar 

  11. Wayne LG, Hollander D, Anderson B, Sramek HA, Vadhim CM, Rotter JI. Immunoglobulin A (IgA) and IgG serum antibodies to mycobacterial antigens in Crohn’s disease patients and their relatives. J Clin Microbiol 1992; 30: 2013–18.

    PubMed  CAS  Google Scholar 

  12. Khoo UY, Proctor IE, Macpherson AJ. CD4+ T cell down-regulation in human intestinal mucosa: evidence for intestinal tolerance to luminal bacterial antigens. J Immunol 1997; 158: 3626–34.

    PubMed  CAS  Google Scholar 

  13. Duchmann R, May E, Heike M, Knolle P, Neurath M, Meyer zum Buschenfelde KH. T cell specificity and cross reactivity towards enterobacteria, Bacteroides, Bifidobacterium, and antigens from resident intestinal flora in humans. Gut 1999; 44: 812–18.

    Article  PubMed  CAS  Google Scholar 

  14. Duchmann R, Neurath MF, Meyer zum Buschenfelde KH. Responses to self and non-self intestinal microflora in health and inflammatory bowel disease. Res Immunol 1997; 148): 589–94.

    PubMed  CAS  Google Scholar 

  15. Weiner HL, Friedman A, Miller A, Khoury SJ, Al-Sabbagh A, Santos L et al. Oral tolerance: immunologic mechanisms and treatment of animal and human organ-specific autoimmune diseases by oral administration of autoantigens. Annu Rev Immunol 1994; 12: 809–37.

    PubMed  CAS  Google Scholar 

  16. Braun MC, Lahey E, Kelsall BL. Selective suppression of IL-12 production by chemoattractants. J Immunol 2000; 164: 3009–17.

    PubMed  CAS  Google Scholar 

  17. Gu L, Tseng S, Horner RM, Tarn C, Loda M, Rollins BJ. Control of TH2 polarization by the chemokine monocyte chemoattractant protein-1. Nature 2000; 404: 407–11.

    PubMed  CAS  Google Scholar 

  18. Lu B, Rutledge BJ, Gu L, Fiorillo J, Lukacs NW, Kunkel SL et al. Abnormalities in monocyte recruitment and cytokine expression in monocyte chemoattractant protein 1-deficient mice. J Exp Med 1998; 187: 601–8.

    PubMed  CAS  Google Scholar 

  19. He J, Gurunathan S, Iwasaki A, Ash-Shaheed B, Kelsall BL. Primary role for Gi protein signaling in the regulation of interleukin 12 production and the induction of T helper cell type 1 responses. J Exp Med 2000; 191: 1605–10.

    PubMed  CAS  Google Scholar 

  20. Uguccioni M, Gionchetti P, Robbiani DF et al. Increased expression of IP-10, IL-8, MCP-1, and MCP-3 in ulcerative colitis. Am J Pathol 1999; 155: 331–6.

    PubMed  CAS  Google Scholar 

  21. Viney JL, Mowat AM, O’Malley JM, Williamson E, Fanger NA. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 1998; 160: 5815–25.

    PubMed  CAS  Google Scholar 

  22. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S, Liu YJ et al. Immunobiology of dendritic cells. Annu Rev Immunol 2000; 18: 767–811.

    PubMed  CAS  Google Scholar 

  23. Hayday AC. [gamma][delta] cells: a right time and a right place for a conserved third way of protection. Annu Rev Immunol 2000; 18: 975–1026.

    PubMed  CAS  Google Scholar 

  24. Brandwein SL, McCabe RP, Cong Y et al. Spontaneously colitic C3H/HeJBir mice demonstrate selective antibody reactivity to antigens of the enteric bacterial flora. J Immunol 1997; 159: 44–52.

    PubMed  CAS  Google Scholar 

  25. Rath HC, Herfarth HH, Ikeda JS et al. Normal luminal bacteria, especially Bacteroides species, mediate chronic colitis, gastritis, and arthritis in HLA-B27/human beta2 microglobulin transgenic rats. J Clin Invest 1996; 98: 945–53.

    PubMed  CAS  Google Scholar 

  26. Kimura K, McCartney AL, McConnell MA, Tannock GW. Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 1997; 63: 3394–8.

    PubMed  CAS  Google Scholar 

  27. Duchmann R, Kaiser I, Hermann E, Mayet W, Ewe K, Meyer zum Buschenfelde KH. Tolerance exists towards resident intestinal flora but is broken in active inflammatory bowel disease (IBD). Clin Exp Immunol 1995; 102: 448–55.

    Article  PubMed  CAS  Google Scholar 

  28. Klaasen HL, Van der Heijden PJ, Stok W et al. Apathogenic, intestinal, segmented, filamentous bacteria stimulate the mucosal immune system of mice. Infect Immun 1993; 61: 303–6.

    PubMed  CAS  Google Scholar 

  29. Macpherson AJ, Gatto D, Sainsbury E, Harriman GR, Hengartner H, Zinkernagel RM. A primitive T cell-independent mechanism of intestinal mucosal IgA responses to commensal bacteria. Science 2000; 288: 2222–6.

    PubMed  CAS  Google Scholar 

  30. Gewirtz AT, McCormick B, Neish AS et al. Pathogen-induced chemokine secretion from model intestinal epithelium is inhibited by lipoxin A4 analogs. J Clin Invest 1998; 101: 1860–9.

    PubMed  CAS  Google Scholar 

  31. Gao Y, Lecker S, Post MJ et al. Inhibition of ubiquitin-proteasome pathway-mediated I kappa B alpha degradation by a naturally occurring antibacterial peptide. J Clin Invest 2000; 106: 439–48.

    PubMed  CAS  Google Scholar 

  32. Maksymowych WP, Ikawa T, Yamaguchi A et al. Invasion by Salmonella typhimurium induces increased expression of the LMP, MECL, and PA28 proteasome genes and changes in the peptide repertoire of HLA-B27. Infect Immun 1998; 66: 4624–32.

    PubMed  CAS  Google Scholar 

  33. VanCott JL, Chatfield SN, Roberts M et al. Regulation of host immune responses by modification of Salmonella virulence genes. Nature Med 1998; 4: 1247–52.

    PubMed  CAS  Google Scholar 

  34. Neish AS, Gewirtz AT, Zeng H et al. Prokaryotic regulation of epithelial responses by inhibition of IkappaB-alpha ubiquitination [See comments]. Science 2000; 289: 1560–3.

    PubMed  CAS  Google Scholar 

  35. Dunne C, Murphy L, Flynn S et al. Probiotics: from myth to reality. Demonstration of functionality in animal models of disease and in human clinical trials. Antonie Van Leeuwenhoek 1999; 76: 279–92.

    PubMed  CAS  Google Scholar 

  36. Shevach EM. Regulatory T Cells in autoimmmunity. Annu Rev Immunol 2000; 18: 423–49.

    PubMed  CAS  Google Scholar 

  37. Healy JI, Goodnow CC. Positive versus negative signaling by lymphocyte antigen receptors. Annu Rev Immunol 1998; 16: 645–70.

    PubMed  CAS  Google Scholar 

  38. Cobbold S, Waldmann H. Infectious tolerance. Curr Opin Immunol 1998; 10: 518–24.

    PubMed  CAS  Google Scholar 

  39. Gutgemann I, Fahrer AM, Altman JD, Davis MM, Chien YH. Induction of rapid T cell activation and tolerance by systemic presentation of an orally administered antigen. Immunity 1998; 8: 667–73.

    PubMed  CAS  Google Scholar 

  40. Mowat AM, Viney JL. The anatomical basis of intestinal immunity. Immunol Rev 1997; 156: 145–66.

    PubMed  CAS  Google Scholar 

  41. Naftzger C, Takechi Y, Kohda H, Hara I, Vijayasaradhi S, Houghton AN. Immune response to a differentiation antigen induced by altered antigen: a study of tumor rejection and autoimmunity. Proc Natl Acad Sci USA 1996; 93: 14809–14.

    PubMed  CAS  Google Scholar 

  42. Hugot J-P, Laurent-Puig P, Gower-Rousseau C et al. Mapping of a susceptibility locus for Crohn’s disease on chromosome 16. Nature 1996; 379: 821–3.

    PubMed  CAS  Google Scholar 

  43. Ohmen JD, Yang H-Y, Yamamoto KK et al. Susceptibility locus for inflammatory bowel disease on chromosome 16 has a role in Crohn’s disease, but not in ulcerative colitis. Hum Mol Genet 1996; 5: 1679–83.

    PubMed  CAS  Google Scholar 

  44. Satsangi J, Parkes M, Jewell DP, Bell JI. Genetics of inflammatory bowel disease. Clin Sci 1998; 94: 473–8.

    PubMed  CAS  Google Scholar 

  45. Cavanaugh JA, Callen DF, Wilson SR et al. Analysis of Australian Crohn’s disease pedigrees refines the localization for susceptibility to inflammatory bowel disease on chromosome 16. Ann Hum Genet 1998; 62: 291–8.

    PubMed  CAS  Google Scholar 

  46. Hampe J, Lynch NJ, Daniels S et al. Fine mapping of the chromosome 3p susceptibility locus in inflammatory bowel disease. Gut 2001; 48: 191–7.

    PubMed  CAS  Google Scholar 

  47. Annese V, Latiano A, Bovio P et al. Genetic analysis in Italian families with inflammatory bowel disease supports linkage to the IBD1 locus — a GISC study. Eur J Hum Genet 1999; 7: 567–73.

    PubMed  CAS  Google Scholar 

  48. Duerr RH, Barmada MM, Zhang L, Pfutzer R, Weeks DE. High-density genome scan in Crohn disease shows confirmed linkage to chromosome 14q11–12. Am J Hum Genet 2000; 66: 1857–62.

    PubMed  CAS  Google Scholar 

  49. Lesage S, Zouali H, Colombel JF et al. Genetic analyses of chromosome 12 loci in Crohn’s disease. Gut 2000; 47: 787–91.

    PubMed  CAS  Google Scholar 

  50. Stokkers PC, Huibregtse K, Jr, Leegwater AC, Reitsma PH, Tytgat GN, van Deventer SJ. Analysis of a positional candidate gene for inflammatory bowel disease: NRAMP2. Inflam Bowel Dis 2000; 6: 92–8.

    Article  CAS  Google Scholar 

  51. Dohi T, Fujihashi K, Kiyono H, Elson CO, McGhee JR. Mice deficient in Th1-and Th2-type cytokines develop distinct forms of hapten-induced colitis. Gastroenterology 2000; 119: 724–33.

    PubMed  CAS  Google Scholar 

  52. Bhan AK, Mizoguchi E, Smith RN, Mizoguchi A. Colitis in transgenic and knockout animals as models of human inflammatory bowel disease. Immunol Rev 1999; 169: 195–207.

    PubMed  CAS  Google Scholar 

  53. De Winter H, Cheroutre H, Kronenberg M. Mucosal immunity and inflammation. II. The yin and yang of T cells in intestinal inflammation: pathogenic and protective roles in a mouse colitis model. Am J Physiol 1999; 276: G1317–21.

    PubMed  Google Scholar 

  54. MacDonald TT. Effector and regulatory lymphoid cells and cytokines in mucosal sites. Curr Top Microbiol Immunol 1999; 236: 113–35.

    PubMed  CAS  Google Scholar 

  55. Sartor RB. Pathogenesis and immune mechanisms of chronic inflammatory bowel diseases. Am J Gastroenterol 1997; 92: 5S–11S.

    PubMed  CAS  Google Scholar 

  56. Mizoguchi A, Mizoguchi E, Saubermann LJ, Higaki K, Blumberg RS, Bhan AK. Limited CD4 T-cell diversity associated with colitis in T-cell receptor alpha mutant mice requires a T helper 2 environment. Gastroenterology 2000; 119: 983–95.

    PubMed  CAS  Google Scholar 

  57. Rees W, Bender J, Teague TK et al. An inverse relationship between T cell receptor affinity and antigen dose during CD4+ T cell responses in vivo and in vitro. Proc Natl Acad Sci USA 2000; 96: 9781–6.

    Google Scholar 

  58. Saubermann LJ, Probert CS, Christ AD et al. Evidence of T cell receptor beta-chain patterns in inflammatory and noninflammatory bowel disease states. Am J Physiol 1999; 276: G613–21.

    PubMed  CAS  Google Scholar 

  59. Sanderson S, Campbell DJ, Shastri N. Identification of a CD4+ T cell-stimulating antigen of pathogenic bacteria by expression cloning. J Exp Med 1995; 182: 1751–7.

    PubMed  CAS  Google Scholar 

  60. Casten LA, Pierce SK. Receptor-mediated B cell antigen processing. Increased antigenicity of a globular protein covalently coupled to antibodies specific for B cell surface structures. J Immunol 1988; 140: 404–10.

    PubMed  CAS  Google Scholar 

  61. Bottomly K, Janeway CA Jr. Antigen presentation by B cells. Nature 1989; 337: 24.

    PubMed  CAS  Google Scholar 

  62. Liu KJ, Parikh VS, Tucker PW, Kim BS. Role of the B cell antigen receptor in antigen processing and presentation: involvement of the transmembrane region in intracellular trafficking of receptor/ligand complexes. J Immunol 1993; 151: 6143–54.

    PubMed  CAS  Google Scholar 

  63. Schultze JL, Gribben JG, Nadler LM. Tumor-specific adoptive T-cell therapy for CD40+ B-cell malignancies. Curr Opin Oncol 1998; 10: 542–7.

    PubMed  CAS  Google Scholar 

  64. Tony H-P, Phillips N, Parker D. Role of membrane immunoglobulin (Ig) crosslinking in membrane Ig-mediated, major histocompatibility-restricted T cell-B cell cooperation. J Exp Med 1985; 162: 1695–708.

    PubMed  CAS  Google Scholar 

  65. Lanzavecchia A. Receptor-mediated antigen uptake and its effect on antigen presentation to class-II-restricted T lymphocytes. Annu Rev Immunol 1990; 8: 773–94.

    PubMed  CAS  Google Scholar 

  66. Korganow AS, Ji H, Mangialaio S et al. From systemic T cell self-reactivity to organ-specific autoimmune disease via immunoglobulins. Immunity 1999; 10: 451–61.

    PubMed  CAS  Google Scholar 

  67. Abiru N, Eisenbarth GS. Multiple genes/multiple autoantigens role in type 1 diabetes. Clin Rev Allergy Immunol 2000; 18: 27–40.

    PubMed  CAS  Google Scholar 

  68. Burton DR. A vaccine for HIV type 1: the antibody perspective. Proc Natl Acad Sci USA 1997; 94: 10018–23.

    PubMed  CAS  Google Scholar 

  69. Winter G, Griffiths AD, Hawkins RE, Hoogenboom HR. Making antibodies by phage display technology. Annu Rev Immunol 1994; 12: 433 55.

    PubMed  Google Scholar 

  70. De Wildt RMT, Steenbakkers PG, Pennings AHM, Van den Hoogen FHJ, Van Venrooij WJ, Hoet RMA. A new method for the analysis and production of monoclonal antibody fragments originating from single human B cells. J Immunol Meth 1997; 207: 61–7.

    Google Scholar 

  71. Siegel DL, Chang TY, Russell SL, Bunya VY. Isolation of cell surface-specific human monoclonal antibodies using phage display and magnetically-activated cell sorting: applications in immunohematology. J Immunol Meth 1997; 206: 73–85.

    CAS  Google Scholar 

  72. Jespers LS, Roberts A, Mahler SM, Winter G, Hoogenboom HR. Guiding the selection of human antibodies from phage display repertoires to a single epitope of an antigen. Biotechnology 1994; 12: 899–903.

    PubMed  CAS  Google Scholar 

  73. Vaughn TJ, Williams AJ, Pritchard K et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nature Biotechnol 1996; 14: 309–14.

    Google Scholar 

  74. Saxon A, Shanahan F, Landers C, Ganz T, Targan SR. A distinct subset of antineutrophil cytoplasmic antibodies is associated with inflammatory bowel disease. J Allergy Clin Immunol 1990; 86: 202–10.

    PubMed  CAS  Google Scholar 

  75. Rump JA, Scholmerich J, Gross V et al. A new type of perinuclear anti-neutrophil cytoplasmic antibody (pANCA) in active ulcerative colitis but not in Crohn’s disease. Immunobiology 1990; 181: 406–13.

    PubMed  CAS  Google Scholar 

  76. Duerr RH, Targan SR, Landers CJ, Sutherland LR, Shanahan F. Anti-neutrophil cytoplasmic antibodies in ulcerative colitis. Comparison with other colitides/diarrheal illnesses. Gastroenterology 1991; 100: 1590–6.

    PubMed  CAS  Google Scholar 

  77. Vidrich A, Lee J, James E, Cobb L, Targan SR. Segregation of pANCA antigenic recognition by DNase treatment of neutrophils: ulcerative colitis, type 1 autoimmune hepatitis, and primary sclerosing cholangitis. J Clin Immunol 1995; 15: 293–9.

    PubMed  CAS  Google Scholar 

  78. Billing P, Tahir S, Calfin B et al. Nuclear localization of the antigen detected by ulcerative colitis-associated perinuclear antineutrophil cytoplasmic antibodies. Am J Pathol 1995; 147: 979–87.

    PubMed  CAS  Google Scholar 

  79. Shanahan F, Duerr RH, Rotter JI et al. Neutrophil auto-antibodies in ulcerative colitis: familial aggregation and genetic heterogeneity. Gastroenterology 1992; 103: 456–61.

    PubMed  CAS  Google Scholar 

  80. Yang H-Y, Rotter JI, Toyoda H et al. Ulcerative colitis: a genetically heterogeneous disorder defined by genetic (HLA class II) and subclinical (antineutrophil cytoplasmic antibodies) markers. J Clin Invest 1993; 92: 1080–4.

    PubMed  CAS  Google Scholar 

  81. Folwaczny C, Noehl N, Endres SP, Heldwein W, Loeschke K, Fricke H. Antinuclear autoantibodies in patients with inflammatory bowel disease high prevalence in first-degree relatives. Dig Dis Sci 1997; 42: 1593–7.

    PubMed  CAS  Google Scholar 

  82. Yang P, Jarnerot G, Danielsson D, Tysk C, Lindberg E. PANCA in monozygotic twins with inflammatory bowel disease. Gut 1995; 36: 887–90.

    PubMed  CAS  Google Scholar 

  83. Quinton JF, Sendid B, Reumaux D et al. Anti-Saccharomyces cerevisiae mannan antibodies combined with antineutrophil cytoplasmic autoantibodies in inflammatory bowel disease: prevalence and diagnostic role. Gut 1998; 42: 788–91.

    Article  PubMed  CAS  Google Scholar 

  84. Mizoguchi E, Mizoguchi A, Chiba C, Niles JL, Bhan AK. Antineutrophil cytoplasmic antibodies in T-cell receptor alpha-deficient mice with chronic colitis. Gastroenterology 1997; 113: 1828–35.

    PubMed  CAS  Google Scholar 

  85. Seibold F, Brandwein S, Simpson S, Terhorst C, Elson CO. pANCA represents a cross-reactivity to enteric bacterial antigens. J Clin Immunol 1998; 18: 153–60.

    PubMed  CAS  Google Scholar 

  86. Seibold F, Slametschka D, Gregor M, Weber P. Neutrophil autoantibodies: a genetic marker in primary sclerosing cholangitis and ulcerative colitis. Gastroenterology 1994; 107: 532–6.

    PubMed  CAS  Google Scholar 

  87. Gahl WA, Brantly M, Kaiser-Kupfer MI et al. Genetic defects and clinical characteristics of patients with a form of oculocutaneous albinism (Hermansky-Pudlak syndrome). N Engl J Med 1998; 338: 1258–64.

    PubMed  CAS  Google Scholar 

  88. Vecchi M, Bianchi MB, Sinico RA et al. Antibodies to neutrophil cytoplasm in Italian patients with ulcerative colitis: sensitivity, specificity and recognition of putative antigens. Digestion 1994; 5: 34–9.

    Google Scholar 

  89. Mulder AH, Broekroelofs J, Horst G, Limburg PC, Nelis GF, Kallenberg CG. Anti-neutrophil cytoplasmic antibodies (ANCA) in inflammatory bowel disease: characterization and clinical correlates. Clin Exp Immunol 1994; 95: 490–7.

    Article  PubMed  CAS  Google Scholar 

  90. Ruemmele FM, Targan SR, Levy G, Dubinsky M, Braun J, Seidman EG. Diagnostic accuracy of serological assays in pediatric inflammatory bowel disease. Gastroenterology 1998; 115: 822–9.

    PubMed  CAS  Google Scholar 

  91. Vasiliauskas EA, Kam LY, Karp LC, Gaiennie J, Yang H, Targan SR. Marker antibody expression stratifies Crohn’s disease into immunologically homogeneous subgroups with distinct clinical characteristics. Gut 2000; 47: 487–96.

    PubMed  CAS  Google Scholar 

  92. Sandborn WJ, Landers CJ, Tremaine WJ, Targan SR. Association of antineutrophil cytoplasmic antibodies with resistance to treatment of left-sided ulcerative colitis: results of a pilot study. Mayo Clin Proc 1996; 71: 431–6.

    PubMed  CAS  Google Scholar 

  93. Vasiliauskas EA, Plevy SE, Landers CJ et al. Perinuclear antineutrophil cytoplasmic antibodies in patients with Crohn’s disease define a clinical subgroup. Gastroenterology 1996; 110: 1810–19.

    PubMed  CAS  Google Scholar 

  94. Sobajima J, Ozaki S, Okazaki T et al. Anti-neutrophil cytoplasmic antibodies (ANCA) in ulcerative colitis: anti-cathepsin G and a novel antibody correlate with refractory type. Clin Exp Immunol 1996; 105: 120–5.

    PubMed  CAS  Google Scholar 

  95. Sugi K, Saitoh O, Matsuse R et al. Antineutrophil cytoplasmic antibodies in Japanese patients with inflammatory bowel disease: prevalence and recognition of putative antigens. Am J Gastroenterol 1999; 94: 1304–12.

    PubMed  CAS  Google Scholar 

  96. Roozendaal C, Zhao MH, Horst G, Lockwood CM, Kleibeuker JH, Limburg PC et al. Catalase and alpha-enolase: two novel granulocyte autoantigens in inflammatory bowel disease (IBD). Clin Exp Immunol 1998; 112: 10–16.

    PubMed  CAS  Google Scholar 

  97. Walmsley RS, Zhao MH, Hamilton MI et al. Antineutrophil cytoplasm autoantibodies against bactericidal/permeability-increasing protein in inflammatory bowel disease. Gut 1997; 40: 105–9.

    PubMed  CAS  Google Scholar 

  98. Terjung B, Spengler U, Sauerbruch T, Worman HJ. ‘Atypical p-ANCA’ in IBD and hepatobiliary disorders react with a 50-kilodalton nuclear envelope protein of neutrophils and myeloid cell lines. Gastroenterology 2000; 119: 310–22.

    PubMed  CAS  Google Scholar 

  99. Sobajima J, Ozaki S, Osakada F, Uesugi H, Shirakawa H, Yoshida M et al. Novel autoantigens of perinuclear antineutrophil cytoplasmic antibodies (p-ANCA) in ulcerative colitis: non-histone chromosomal proteins, HMG1 and HMG2. Clin Exp Immunol 1997; 107: 135–40.

    PubMed  CAS  Google Scholar 

  100. Sobajima J, Ozaki S, Uesugi H et al. Prevalence and characterization of perinuclear anti-neutrophil cytoplasmic antibodies (P-ANCA) directed against HMG1 and HMG2 in ulcerative colitis (UC). Clin Exp Immunol 1998; 111: 402–7.

    PubMed  CAS  Google Scholar 

  101. Reumaux D, Meziere C, Colombel J-F, Duthilleul P, Muller S. Distinct production of autoantibodies to nuclear components in ulcerative colitis and in Crohn’s disease. Clin Immunol Immunopathol 1995; 77: 349–57.

    PubMed  CAS  Google Scholar 

  102. Eggena M, Cohavy O, Parseghian M et al Identification of histone H1 as a cognate antigen of the ulcerative colitis-associated marker antibody pANCA. J Autoimmun 2000; 14: 83–97.

    PubMed  CAS  Google Scholar 

  103. Giese K, Cox J, Grosschedl R. The HMG domain of lymphoid enhancer factor 1 bends DNA and facilitates assembly of functional nucleoprotein structures. Cell 1992; 69: 185–95.

    PubMed  CAS  Google Scholar 

  104. Yoshida M, Shimura K. Unwinding of DNA by nonhistone chromosomal protein HMG (1+2) from pig thymus as determined with endonuclease. J Biochem 1984; 95: 117–24.

    PubMed  CAS  Google Scholar 

  105. Parseghian M, Harris DA, Rishwain DR, Hamkalo BA. Characterization of a set of antibodies specific for three human histone H1 subtypes. Chromosoma 1994; 103: 198–208.

    PubMed  CAS  Google Scholar 

  106. Muller S, Richalet P, Laurent-Crawford A et al. Autoantibodies typical of non-organ-specific autoimmune diseases in HIV-seropositive patients. AIDS 1992; 6: 933–42.

    PubMed  CAS  Google Scholar 

  107. Morino N, Sakurai H, Yamada A, Yazaki Y, Minota S. Rabbit anti-chromatin antibodies recognize similar epitopes on a histone H1 molecule as lupus autoantibodies. Clin Immunol Immunopathol 1995; 77: 52–8.

    PubMed  CAS  Google Scholar 

  108. Stemmer C, Briand J-P, Muller S. Mapping of linear epitopes of human histone H1 recognized by rabbit anti-H1/H5 antisera and antibodies from autoimmune patients. Mol Immunol 1994; 31: 1037–46.

    PubMed  CAS  Google Scholar 

  109. Sobajima J, Ozaki S, Uesugi H et al. High mobility group (HMG) non-histone chromosomal proteins HMG1 and HMG2 are significant target antigens of perinuclear antineutrophil cytoplasmic antibodies in autoimmune hepatitis [See comments]. Gut 1999; 44: 867–73.

    Article  PubMed  CAS  Google Scholar 

  110. Eggena M, Targan SR, Iwanczyk L, Vidrich A, Gordon LK, Braun J. Phage display cloning and characterization of an immunogenetic marker (perinuclear anti-neutrophil cytoplasmic antibody) in ulcerative colitis. J Immunol 1996; 156: 4005–11.

    PubMed  CAS  Google Scholar 

  111. Gordon LK, Eggena M, Targan SR, Braun J. Definition of ocular antigens in ciliary body and retinal ganglion cells by the marker antibody pANCA. Invest Ophthalmol Vis Sci 1999; 40: 1250–5.

    PubMed  CAS  Google Scholar 

  112. Gordon LK, Eggena M, Targan SR, Braun J. Mast cell and neuroendocrine cytoplasmic autoantigen(s) detected by monoclonal pANCA antibodies. Clin Immunol 2000; 94: 42–50.

    PubMed  CAS  Google Scholar 

  113. Fiocchi C, Roche JK, Michener WM. High prevalence of antibodies to intestinal epithelial antigens in patients with inflammatory bowel disease and their relatives. Ann Intern Medl 1989; 110: 786–94.

    CAS  Google Scholar 

  114. Halstensen TS, Das KM, Brandtzaeg P. Epithelial deposits of immunoglobulin G1 and activated complement co-localize with the M(r) 40 kD putative autoantigen in ulcerative colitis. Gut 1993; 34: 650–7.

    PubMed  CAS  Google Scholar 

  115. Das KM, Vecchi M, Sakamaki S. A shared and unique epitope(s) on human colon, skin, and biliary epithelium detected by a monoclonal antibody. Gastroenterology 1990; 98: 464–9.

    PubMed  CAS  Google Scholar 

  116. Geng X, Biancone L, Dai HH et al. Tropomyosin isoforms in intestinal mucosa: production of autoantibodies to tropomyosin isoforms in ulcerative colitis. Gastroenterology 1998; 114: 912–22.

    PubMed  CAS  Google Scholar 

  117. Ohman L, Franzen L, Rudolph U, Harriman GR, Hultgren HE. Immune activation in the intestinal mucosa before the onset of colitis in Galphai2-deficient mice. Scand J Immunol 2000; 52: 80–90.

    PubMed  CAS  Google Scholar 

  118. Sakamaki S, Takayanagi N, Yoshizaki N et al. Autoantibodies against the specific epitope of human tropomyosin(s) detected by a peptide based enzyme immunoassay in sera of patients with ulcerative colitis show antibody dependent cell mediated cytotoxicity against HLA-DPw9 transfected L cells. Gut 2000; 47: 236–41.

    PubMed  CAS  Google Scholar 

  119. Mizoguchi A, Mizoguchi E, Smith RN, Preffer FI, Bhan AK. Suppressive role of B cells in chronic colitis of T cell receptor alpha mutant mice. J Exp Med 1997; 186: 1749–56.

    PubMed  CAS  Google Scholar 

  120. Stevens TR, Winrow VR, Blake DR, Rampton DS. Circulating antibodies to heat-shock protein 60 in Crohn’s disease and ulcerative colitis. Clin Exp Immunol 1992; 90: 271–4.

    Article  PubMed  CAS  Google Scholar 

  121. Steinhoff U, Brinkmann V, Klemm U et al. Autoimmune intestinal pathology induced by hsp60-specific CD8 T cells. Immunity 1999; 11: 349–358.

    PubMed  CAS  Google Scholar 

  122. Seibold F, Mork HJ, Tanza S et al. Pancreatic autoantibodies in Crohn’s disease: a family study. Gut 1997; 40: 481–4.

    PubMed  CAS  Google Scholar 

  123. Seibold F, Weber P, Henss H, Widmann KH. Antibodies to a trypsin sensitive pancreatic antigen in chronic inflammatory bowel disease. Specific markers for a subgroup of patients with Crohn’s disease. Gut 1991; 32: 1192–7.

    PubMed  CAS  Google Scholar 

  124. Stevens TR, Harley SL, Groom JS et al. Anti-endothelial cell antibodies in inflammatory bowel disease. Dig Dis Sci 1993; 38: 426–32.

    PubMed  CAS  Google Scholar 

  125. Romas E, Paspaliaris B, d’Apice AJ, Elliott PR. Autoantibodies to neutrophil cytoplasmic (ANCA) and endothelial cells. Austr NZ J Med 1992; 22: 652–9.

    CAS  Google Scholar 

  126. Aldebert D, Masy E, Reumaux D, Lion G, Colombel J-F, Duthilleul P. Immunoglobulin G subclass distribution of anti-endothelial cell antibodies (AECA) in patients with ulcerative colitis and Crohn’s disease. Dig Dis Sci 1997; 42: 2350–5.

    PubMed  CAS  Google Scholar 

  127. Auer IO, Roder A, Wensinck F, van de Merwe JP, Schmidt H. Selected bacterial antibodies in Crohn’s disease and ulcerative colitis. Scand J Gastroenterol 1983; 18: 217–23.

    Article  PubMed  CAS  Google Scholar 

  128. O’Mahony S, Anderson N, Nuki G, Ferguson A. Systemic and mucosal antibodies to Klebsiella in patients with ankylosing spondylitis and Crohn’s disease. Ann Rheum Dis 1992; 51: 1296–300.

    Article  PubMed  CAS  Google Scholar 

  129. Liu Y, Van Kruiningen HJ, West AB, Cartun RW, Cortot A, Colombel J-F. Immunocytochemical evidence of Listeria, Escherichia coli, and Streptococcus antigens in Crohn’s disease. Gastroenterology 1995; 108: 1396–404.

    PubMed  CAS  Google Scholar 

  130. Walmsley RS, Anthony A, Sim R, Pounder RE, Wakefield AJ. Absence of Escherichia coli, Listeria monocytogenes, and Klebsiella pneumoniae antigens within inflammatory bowel disease tissues. J Clin Pathol 1998; 51: 657–61.

    PubMed  CAS  Google Scholar 

  131. Cong Y, Brandwein SL, McCabe RP et al. CD4+ T cells reactive to enteric bacterial antigens in spontaneously colitic C3H/HeJBir mice: increased T helper cell type 1 response and ability to transfer disease. J Exp Med 1998; 187: 855–64.

    PubMed  CAS  Google Scholar 

  132. Peeters M, Geypens B, Claus D et al. Clustering of increased small intestinal permeability in families with Crohn’s disease. Gastroenterology 1997; 113: 802–7.

    PubMed  CAS  Google Scholar 

  133. Hollander D, Vadheim CM, Brettholz E, Petersen GM, Delahunty T, Rotter JI. Increased intestinal permeability in Crohn’s patients and their relatives: an etiologic factor? Ann Intern Med 1986; 105: 883–5.

    PubMed  CAS  Google Scholar 

  134. Sartor RB. The influence of normal microbial flora on the development of chronic mucosal inflammation. Res Immunol 1997; 148: 567–76.

    PubMed  CAS  Google Scholar 

  135. Main J, McKenzie H, Yeaman GR, Kerr MA, Robson DPCR, Parratt D. Antibody to Saccharomyces cerevisiae (bakers’ yeast) in Crohn’s disease. Br Med J 1988; 297: 1105–6.

    Article  CAS  Google Scholar 

  136. McKenzie H, Main J, Pennington CR, Parratt D. Antibody to selected strains of Saccharomyces cerevisiae (baker’s and brewer’s yeast) and Candida albicans in Crohn’s disease. Gut 1990; 31: 536–8.

    PubMed  CAS  Google Scholar 

  137. Barnes RMR, Allan S, Taylor-Robinson CH, Finn R, Johnson PM. Serum antibodies reactive with Saccharomyces cerevisiae in inflammatory bowel disease: is IgA antibody a marker for Crohn’s disease. Int Arch Allergy Appl Immunol 1990; 92: 9–15.

    PubMed  CAS  Google Scholar 

  138. Giafler MH, Clark A, Holdsworth CD. Antibodies to Saccharomyces cerevisiae in patients with Crohn’s disease and their possible pathogenic importance. Gut 1992; 33: 1071–5.

    Google Scholar 

  139. Lindberg E, Magnusson KE, Tysk C, Jarnerot G. Antibody (IgG, IgA, and IgM) to baker’s yeast (Saccharomyces cerevisiae), yeast mannan, gliadin, ovalbumin, and betalactoglobulin in monozygotic twins with inflammatory bowel disease. Gut 1992; 33: 909–13.

    PubMed  CAS  Google Scholar 

  140. Colombel J-F, Sendid B, Jacquinor PM, Cortot A, Camus D, Poulain D. Evidence for a specific antibody response to Saccharomyces cerevisiae oligomannosidic epitopes in Crohn’s disease. Gastroenterology 1994; 108: 800A.

    Google Scholar 

  141. Sendid B, Colombel JF, Jacquinot PM et al. Specific antibody response to oligomannosidic epitopes in Crohn’s disease. Clin Diag Lab Immunol 1996; 3: 219–26.

    CAS  Google Scholar 

  142. Davidson IW, Lloyd RS, Whorewell PJ, Wright R. Antibodies to maize in patients with Crohn’s disease, ulcerative colitis, and coeliac disease. Clin Exp Immunol 1979; 35: 147–8.

    PubMed  CAS  Google Scholar 

  143. Sonnenberg A. Occupational distribution of inflammatory bowel disease among German employees. Gut 1990; 31: 1037–40.

    PubMed  CAS  Google Scholar 

  144. Sendid B, Quinton JF, Charrier G et al. Anti-Saccharomyces cerevisiae mannan antibodies in familial Crohn’s disease. Am J Gastroenterol 1998; 93: 1306–10.

    PubMed  CAS  Google Scholar 

  145. Sutton C, Yang H-Y, Rotter JI, Targan SR, Braun J. Familial expression of anti-Saccharomyces cerevisiae mannan antibodies (ASCA) in affected and unaffected relatives of Crohn’s disease patients. Gut 2000; 46: 58–63.

    PubMed  CAS  Google Scholar 

  146. Elsaghier A, Prantera C, Moreno C, Ivanyi J. Antibodies to Mycobacterium paratuberculosis-specific protein antigens in Crohn’s disease. Clin Exp Immunol 1992; 90: 503–8.

    Article  PubMed  CAS  Google Scholar 

  147. Suenaga K, Yokoyama Y, Nishimori I et al. Serum antibodies to Mycobacterium paratuberculosis in patients with Crohn’s disease. Dig Dis Sci 1999; 44: 1202–7.

    PubMed  CAS  Google Scholar 

  148. VannurTel P, Dieterich C, Naerhuyzen B et al. Occurrence, in Crohn’s disease, of antibodies directed against a species-specific recombinant polypeptide of Mycobacterium paratuberculosis. Clin Diag Lab Immunol 1994; 1: 241–3.

    Google Scholar 

  149. El-Zaatari FA, Naser SA, Engstrand L, Hachem CY, Graham DY. Identification and characterization of Mycobacterium paratuberculosis recombinant proteins expressed in E. coli. Curr Microbiol 1994; 29: 177–84.

    PubMed  CAS  Google Scholar 

  150. Naser SA, Hulten K, Shafran I, Graham DY, El Zaatari FA. Specific seroreactivity of Crohn’s disease patients against p35 and p36 antigens of M. avium subsp. paratuberculosis. Wei Microbiol 2000; 77: 497–504.

    CAS  Google Scholar 

  151. Cohavy O, Harth G, Horwitz MA et al. Identification of a novel mycobacterial histone HI homologue (HupB) as an antigenic target of pANCA monoclonal antibody and serum IgA from patients with Crohn’s disease. Infect Immun 1999; 67: 6510–17.

    PubMed  CAS  Google Scholar 

  152. Cocito C, Gilot P, Coene M, De Kesel M, Poupart P, Vannuffel P. Paratuberculosis. Clin Microbiol Rev 1994; 7: 328–45.

    PubMed  CAS  Google Scholar 

  153. Van Kruiningen HJ. Lack of support for a common etiology in Johne’s disease of animals and Crohn’s disease in humans. Inflam Bowel Dis 1999; 5: 183–91.

    Article  Google Scholar 

  154. Cohavy O, Bruckner D, Eggena ME, Targan SR, Gordon LK, Braun J. Colonic bacteria express an ulcerative colitis pANCA-related protein epitope. Infect Immun 2000; 68: 1542–8.

    PubMed  CAS  Google Scholar 

  155. Wei B, Dalwadi H, Gordon LK et al. Molecular cloning of a Bacteroides caccae TonB-linked outer membrane protein associated with inflammatory bowel disease. Infect Immun 2001 (In press).

    Google Scholar 

  156. Sutton CL, Kim J, Yamane A et al. Identification of a novel bacterial sequence associated with Crohn’s disease. Gastroenterology 2000; 119: 23–8.

    PubMed  CAS  Google Scholar 

  157. Dalwadi H, Kronenberg M, Sutton CL, Braun J. The Crohn’s disease-associated bacterial protein, 12, is a novel enteric T cell superantigen. Immunity 2001 (submitted).

    Google Scholar 

  158. Lombardi G, Annese V, Piepoli A et al. Antineutrophil cytoplasmic antibodies in inflammatory bowel disease: clinical role and review of the literature. Dis Colon Rectum 2000; 43: 999–1007.

    PubMed  CAS  Google Scholar 

  159. Fleshner PR, Vasiliauskas EA, Kam LY, Abreu-Martin MT, Targan SR. High level perinuclear antineutrophil cytoplasmic antibody (pANCA) in ulcerative colitis patients before colectomy predicts the development of chronic pouchitis after ileal pouch anal anastomosis. Gastroenterology 1999; 116: A716.

    Google Scholar 

  160. Vecchi M, Bianchi MB, Calabresi C, Meucci G, Tatarella M, de Franchis R. Long-term observation of the perinuclear anti-neutrophil cytoplasmic antibody status in ulcerative colitis patients. Scand J Gastroenterol 1998; 33: 170–3.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Kluwer Academic Publishers

About this chapter

Cite this chapter

Braun, J., Cohavy, O., Eggena, M. (2003). Antibodies in the exploration of inflammatory bowel disease pathogenesis and disease stratification. In: Targan, S.R., Shanahan, F., Karp, L.C. (eds) Inflammatory Bowel Disease: From Bench to Bedside. Springer, Boston, MA. https://doi.org/10.1007/0-387-25808-6_10

Download citation

  • DOI: https://doi.org/10.1007/0-387-25808-6_10

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-25807-2

  • Online ISBN: 978-0-387-25808-9

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics