Skip to main content

Self-Organized Control of Irregular or Perturbed Network Traffic

  • Chapter
Book cover Optimal Control and Dynamic Games

Abstract

We present a fluid-dynamic model for the simulation of urban traffic networks with road sections of different lengths and capacities. The model allows one to efficiently simulate the transitions between free and congested traffic, taking into account congestion-responsive traffic assignment and adaptive traffic control. We observe dynamic traffic patterns which significantly depend on the respective network topology. Synchronization is only one interesting example and implies the emergence of green waves. In this connection, we will discuss adaptive strategies of traffic light control which can considerably improve throughputs and travel times, using self-organization principles based on local interactions between vehicles and traffic lights. Similar adaptive control principles can be applied to other queueing networks such as production systems. In fact, we suggest to turn push operation of traffic systems into pull operation: By removing vehicles as fast as possible from the network, queuing effects can be most efficiently avoided. The proposed control concept can utilize the cheap sensor technologies available in the future and leads to reasonable operation modes. It is flexible, adaptive, robust, and decentralized rather than based on precalculated signal plans and a vulnerable traffic control center.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beaumariage, T., and Kempf, K. The nature and origin of chaos in manufacturing systems. In: Proceedings of 1994 IEEE/SEMI Advanced Semiconductor Manufacturing Conference and Workshop, pp. 169–174, Cambridge, MA, 1994.

    Google Scholar 

  2. [Ben-Akiva, McFadden et al. (1999)]_Ben-Akiva, M., McFadden, D. M. et al. Extended framework for modeling choice behavior. Marketing Letters, 10:187–203, 1999.

    Article  Google Scholar 

  3. [Brockfeld et al. (2001)]_Brockfeld, E., Barlovic, R., Schadschneider, A., and Schreckenberg, M. Optimizing traffic lights in a cellular automaton model for city traffic. Physical Review E, 64:056132, 2001.

    Article  Google Scholar 

  4. [Chrobok et al. (2000)]_Chrobok, R., Kaumann, O., Wahle, J., and Schreckenberg, M. Three categories of traffic data: Historical, current, and predictive. In: E. Schnieder and U. Becker (eds), Proceedings of the 9th IFAC Symposium ‘Control in Transportation Systems', pp. 250–255, Braunschweig, 2000.

    Google Scholar 

  5. Cremer, M., and Ludwig, J. A fast simulation model for traffic flow on the basis of Boolean operations. Mathematics and Computers in Simulation, 28:297–303, 1986.

    Article  Google Scholar 

  6. Daganzo, C. The cell transmission model, Part II: Network traffic. Transportation Research B, 29:79–93, 1995.

    Article  Google Scholar 

  7. [Diakaki et al. (2003)]_Diakaki, C., Dinopoulou, V., Aboudolas, K., Papageorgiou, M., Ben-Shabat, E., Seider, E., and Leibov, A. Extensions and new applications of the traffic signal control strategy TUC. Transportation Research Board, 1856:202–211, 2003.

    Google Scholar 

  8. [Diaz-Rivera et al. (2000)]_Diaz-Rivera, I., Armbruster, D., and Taylor, T. Periodic orbits in a class of reentrant manufacturing systems. Mathematics and Operations Research, 25:708–725, 2000.

    Article  Google Scholar 

  9. [Elloumi et al. (1994)] Elloumi, N., Haj-Salem, H., and Papageorgiou, M. METACOR: A macroscopic modelling tool for urban corridors. TRISTAN II (Triennal Symposium on Transportation Analysis), 1:135–150, 1994.

    Google Scholar 

  10. Esser, J., and Schreckenberg, M. Microscopic simulation of urban traffic based on cellular automata. International Journal of Modern Physics C, 8(5):1025, 1997.

    Article  Google Scholar 

  11. Fouladvand, M. E., and Nematollahi, M. Optimization of green-times at an isolated urban crossroads. European Physical Journal B, 22:395–401, 2001.

    Google Scholar 

  12. Gartner, N. H. OPAC: Strategy for demand-responsive decentralized traffic signal control. In: J.P. Perrin (ed), Control, Computers, Communications in Transportation, pp. 241–244, Oxford, UK, 1990.

    Google Scholar 

  13. Helbing, D. Verkehrsdynamik [Traffic Dynamics]. Springer Verlag, 1997.

    Google Scholar 

  14. Helbing, D. Modelling supply networks and business cycles as unstable transport phenomena. New Journal of Physics, 5:90.1–90.28, 2003.

    Article  Google Scholar 

  15. Helbing, D. A section-based queueing-theoretical traffic model for congestion and travel time analysis in networks. Journal of Physics A: Mathematical and General, 36:L593–L598, 2003.

    Article  Google Scholar 

  16. Helbing, D. Modeling and optimization of production processes: Lessons from traffic dynamics. In: G. Radons and R. Neugebauer (eds), Nonlinear Dynamics of Production Systems, pp. 85–105, Wiley, NY, 2004.

    Google Scholar 

  17. Helbing, D. Production, supply, and traffic systems: A unified description. In: S. Hoogendoorn, P.V.L. Bovy, M. Schreckenberg, and D.E. Wolf (eds) Traffic and Granular Flow’ 03, Berlin, 2005.

    Google Scholar 

  18. [Helbing et al. (2004)]_Helbing, D., Lämmer, S., Witt, U., and Brenner, T. Network-induced oscillatory behavior in material flow networks and irregular business cycles. Physical Review E, 70:056118, 2004.

    Article  Google Scholar 

  19. Helbing, D., and Molnár, P. Social force model of pedestrian dynamics. Physical Review E, 51:4282–4286, 1995.

    Article  Google Scholar 

  20. [Helbing et al. (2002)]_Helbing, D., Schönhof, M., and Kern, D. Volatile decision dynamics: Experiments, stochastic description, intermittency control, and traffic optimization. New Journal of Physics, 4:33.1–33.16, 2002.

    Article  Google Scholar 

  21. Henry, J. J., and Farges, J. L. PRODYN. In: J.P. Perrin (ed), Control, Computers, Communications in Transportation, pp. 253–255, Oxford, UK, 1989.

    Google Scholar 

  22. Hu, T.-Y., and Mahmassani, H. S. Day-today evolution of network flows under real-time information and reactive signal control. Transportation Research C, 5(1):51–69, 1997.

    Google Scholar 

  23. Huang, D.-W., and Huang, W.-N. Traffic signal synchronization. Physical Review E, 67:056124, 2003.

    Article  Google Scholar 

  24. Lebacque, J. P. Intersection modeling, application to macroscopic network traffic flow modeling and traffic management. In: S. Hoogendoorn, P. H. L. Bovy, M. Schreckenberg, and D. E. Wolf (eds) Traffic and Granular Flow’ 03, Springer, Berlin, 2005.

    Google Scholar 

  25. [Li et al. (2004)]_Li, Z., Wang, H., and Han, L.D. A proposed four-level fuzzy logic for traffic signal control. Transportation Research Board, CDROM Proceedings, 2004.

    Google Scholar 

  26. Lighthill, M. J., and Whitham, G. B. On kinematic waves: II. A theory of traffic on long crowded roads. Proceedings of the Royal Society A, 229:317–345, 1955.

    Google Scholar 

  27. Lin, D., and Chen, R.L. Comparative evaluation of dynamic TRANSYT and SCATS based signal control logic using microscopic traffic simulations. Transportation Research Board, CDROM Proceedings, 2004.

    Google Scholar 

  28. [Lotito et al. (2002)]_Lotito, P., Mancinelli, E., and Quadrat J.P. Max-Plus Algebra and microscopic modelling of traffic systems. In: J.P. Lebacque, M. Rascle, and J.P. Quadrat (eds), Actes de l'Ecole d'Automne: Modéelisation mathéematique du traffic véhiculaire, Actes INRETS (in print), 2004.

    Google Scholar 

  29. Mahmassani, H. S., and Jou, R. C. Transferring insights into commuter behavior dynamics from laboratory experiments to field surveys. Transportation Research A, 34:243–260, 2000.

    Google Scholar 

  30. [Mancinelli et al. (2001)]_Mancinelli, E., Cohen, G., Quadrat, J.P., Gaubert, S., and Rofman, E. On traffic light control of regular towns. INRIA Report 4276, 2001.

    Google Scholar 

  31. Mauro, V., and Di Taranto, C. UTOPIA. In: J.P. Perrin (ed), IFAC Control, Computers, Communications in Transportation, pp. 575–597, Paris, 1989.

    Google Scholar 

  32. [Nagel et al. (2000)]_Nagel, K., Esser, J., and Rickert M. Large-scale traffic simulations for transport planning. In: D. Stauffer (ed), Annual Review of Computational Physics VII, pp.151–202, World Scientific, 2000.

    Google Scholar 

  33. Niittymäki, J. Fuzzy traffic signal control. In: M. Patriksson, M. Labbé (eds) Transportation Planning: State of the Art, Kluwer Academic Publishers, 2002.

    Google Scholar 

  34. Papageorgiou, M. Concise Encyclopedia of Traffic and Transportation Systems. Pergamon Press, 1991.

    Google Scholar 

  35. [Pikovsky et al. (2001)]_Pikovsky, A., Rosenblum, M., and Kurths, J. Synchronization. A Universal Concept in Nonlinear Sciences. Cambridge University Press, 2001.

    Google Scholar 

  36. Robertson, D. The TRANSYT method of coordinating traffic signals. Traffic Engineering and Control, 76–77, 1997.

    Google Scholar 

  37. Robertson, D., and Bretherton, R.D. Optimising networks of traffic signals in real-time: The SCOOT method. IEEE Transactions on Vehicular Technology, 40(1):11–15, 1991.

    Article  Google Scholar 

  38. [Sayers et al. (1998)]_Sayers, T., Anderson, J., and Bell, M. Traffic control system optimization: a multiobjective approach. In: J.D. Grifiths (ed), Mathematics in Transportation Planning, Pergamon Press, 1998.

    Google Scholar 

  39. Scémama, G. “CLAIRE”: a context free Artificial Intelligence based supervior for traffic control. In: M. Bielli, G. Ambrosino, and M. Boero (eds), Artificial Intelligence Applications to Traffic Engineering, pp. 137–156, Zeist, Netherlands, 1994.

    Google Scholar 

  40. Schreckenberg, M., and Selten, R. Human Behaviour and Traffic Networks. Springer Verlag, 2004.

    Google Scholar 

  41. Sims, A.G., and Dobinson, K.W. SCAT: the Sydney co-ordinated adaptative traffic system philosophy and benefits. Proceedings of the International Symposium on Traffic Control Systems, Volume 2B, pp. 19–41, 1979.

    Google Scholar 

  42. Stamatiadis, C., and Gartner, N. Progression optimization in large urban networks: a heuristic decomposition approach. In: A. Ceder (ed), Transportation and Traffic Theory, pp. 645–662, Pergamon Press, 1999.

    Google Scholar 

  43. Stirn, A. Das Geheimnis der grünen Welle [The secret of the green wave]. Süddeutsche Zeitung, June 17, 2003.

    Google Scholar 

  44. [Treiber at al. (1999)]_Treiber, M., Hennecke, A., and Helbing, D. Derivation, properties, and simulation of a gas-kinetic-based, nonlocal traffic model. Physical Review E, 59:239–253, 1999.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dirk Helbing .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer

About this chapter

Cite this chapter

Helbing, D., Lämmer, S., Lebacque, JP. (2005). Self-Organized Control of Irregular or Perturbed Network Traffic. In: Deissenberg, C., Hartl, R.F. (eds) Optimal Control and Dynamic Games. Advances in Computational Management Science, vol 7. Springer, Boston, MA. https://doi.org/10.1007/0-387-25805-1_15

Download citation

Publish with us

Policies and ethics