Skip to main content

Problems and Results on Geometric Patterns

  • Chapter
Graph Theory and Combinatorial Optimization

Abstract

Many interesting problems in combinatorial and computational geometry can be reformulated as questions about occurrences of certain patterns in finite point sets. We illustrate this framework by a few typical results and list a number of unsolved problems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ábrego, B.M. and Fernández-Merchant, S. (2000). On the maximum number of equilateral triangles. I. Discrete and Computational Geometry, 23:129–135.

    Article  MathSciNet  Google Scholar 

  • Ábrego, B.M. and Fernández-Merchant S. (2002). Convex polyhedra in ℝ3spanning Ω(n4/3) congruent triangles, Journal of Combinatorial Theory. Series A, 98:406–409.

    Article  MathSciNet  Google Scholar 

  • Agarwal, P.K. and Sharir, M. (2002). On the number of congruent simplices in a point set. Discrete and Computational Geometry, 28:123–150.

    Article  MathSciNet  Google Scholar 

  • Akutsu, T., Tamaki, H., and Tokuyama, T. (1998). Distribution of distances and triangles in a point set and algorithms for computing the largest common point sets. Discrete and Computational Geometry, 20:307–331.

    Article  MathSciNet  Google Scholar 

  • Aronov, B., Pach, J., Sharir, M., and Tardos, G. (2003). Distinct distances in three and higher dimensions. In: 35th ACM Symposium on Theory of Computing, pp. 541–546. Also in: Combinatorics, Probability and Computing, 13:283–293.

    Google Scholar 

  • Beck, J. (1983). On the lattice property of the plane and some problems of Dirac, Motzkin and Erdős in combinatorial geometry. Combinatorica, 3:281–297.

    MATH  MathSciNet  Google Scholar 

  • Beck, J. and Spencer, J. (1984). Unit distances. Journal of Combinatorial Theory. Series A, 3:231–238.

    Article  MathSciNet  Google Scholar 

  • Brass, P. (1997). On the maximum number of unit distances among n points in dimension four. In: I. Bárány et al. (eds.), Intuitive Geometry, pp. 277–290 Bolyai Society Mathematical Studies, vol. 4. Note also the correction of one case by K. Swanepoel in the review MR 98j:52030.

    Google Scholar 

  • Brass, P. (2000). Exact point pattern matching and the number of congruent triangles in a three-dimensional pointset, In: M. Paterson (ed.), Algorithms — ESA 2000, pp. 112–119. Lecture Notes in Computer Science, vol. 1879, Springer-Verlag.

    Google Scholar 

  • Brass, P. (2002). Combinatorial geometry problems in pattern recognition. Discrete and Computational Geometry, 28:495–510.

    Article  MATH  MathSciNet  Google Scholar 

  • Burton, G.R. and Purdy, G.B. (1979). The directions determined by n points in the plane. Journal of the London Mathematical Society, 20:109–114.

    MathSciNet  Google Scholar 

  • Cantwell, K. (1996). Finite Euclidean Ramsey theory. Journal of Combinatorial Theory. Series A, 73:273–285.

    MATH  MathSciNet  Google Scholar 

  • Chung, F.R.K. (1984). The number of different distances determined by n points in the plane. Journal of Combinatorial Theory. Series A, 36:342–354.

    Article  MATH  MathSciNet  Google Scholar 

  • Chung, F.R.K., Szemerédi, E., and Trotter, W.T. (1992) The number of different distances determined by a set of points in the Euclidean plane. Discrete and Computational Geometry, 7:1–11.

    Article  MathSciNet  Google Scholar 

  • Clarkson, K.L., Edelsbrunner, H., Guibas, L., Sharir, M., and Welzl, E. (1990). Combinatorial complexity bounds for arrangements of curves and spheres. Discrete and Computational Geometry, 5:99–160.

    Article  MathSciNet  Google Scholar 

  • Elekes, G. and Erdős, P. (1994). Similar configurations and pseudo grids. In: K. Böröczky et. al. (eds.), Intuitive Geometry, pp. 85–104. Colloquia Mathematica Societatis János Bolyai, vol. 63.

    Google Scholar 

  • Erdős, P. (1946). On sets of distances of n points. American Mathematical Monthly, 53:248–250.

    Article  MathSciNet  Google Scholar 

  • Erdős, P. (1960). On sets of distances of n points in Euclidean space. Magyar Tudományos Akadémia Matematikai Kutató Intézet Közleményei 5:165–169.

    Google Scholar 

  • Erdős, P., Graham, R.L., Montgomery, P., Rothschild, B.L., Spencer, J., and Straus, E.G. (1973). Euclidean Ramsey theorems. I. Journal of Combinatorial Theory, Series A, 14:341–363.

    Article  MathSciNet  Google Scholar 

  • Erdős, P., Graham, R.L., Montgomery, P. Rothschild, B.L., Spencer, J., and Straus, E.G. (1975). Euclidean Ramsey theorems. III. In: A. Hajnal, R. Rado, and V.T. Sós (eds.), Infinite and Finite Sets, pp. 559–584. North-Holland, Amsterdam.

    Google Scholar 

  • Erdős, P., Hickerson, D., and Pach, J. (1989). A problem of Leo Moser about repeated distances on the sphere, American Mathematical Monthly, 96:569–575.

    Article  MathSciNet  Google Scholar 

  • Erdős, P. and Purdy, G. (1971). Some extremal problems in geometry, Journal of Combinatorial Theory, Series A, 10:246–252.

    Article  MathSciNet  Google Scholar 

  • Erdős, P.and Purdy, G. (1977). Some extremal problems in geometry. V, In; Proceedings of the Eighth Southeastern Conference on Combinatorics, Graph Theory and Computing, pp. 569–578. Congressus Numerantium, vol. 19.

    Google Scholar 

  • Frankl, P. and Rödl, V. (1986). All triangles are Ramsey. Transactions of the American Mathematical Society, 297:777–779.

    Article  MathSciNet  Google Scholar 

  • Hadwiger, H. (1961). Ungelöste Probleme No. 40. Elemente der Mathematik, 16:103–104.

    MATH  MathSciNet  Google Scholar 

  • Hales, A.W. and Jewett, R.I. (1963). Regularity and positional games. Transactions of the American Mathematical Society, 106:222–229.

    Article  MathSciNet  Google Scholar 

  • Józsa, S. and Szemerédi, E. (1975). The number of unit distances in the plane. In: A. Hajnal et al. (eds.), Infinite and Finite Sets, Vol. 2, pp. 939–950. Colloquia Mathematica Societatis János Bolyai vol. 10, North Holland.

    Google Scholar 

  • Katz, N.H. and Tardos, G. (2004). Note on distinct sums and distinct distances. In: J. Pach (ed.), Towards a Theory of Geometric Graphs, pp. 119–126. Contemporary Mathematics, vol.342, American Mathematical Society, Providence, RI.

    Google Scholar 

  • van Kreveld, M.J. and de Berg, M.T. (1989). Finding squares and rectangles in sets of points. In: M. Nagl (ed.), Graph-Theoretic Concepts in Computer Science, pp. 341–355. Lecture Notes in Computer Science, vol. 411, Springer-Verlag.

    Google Scholar 

  • Křiž, I. (1992). All trapezoids are Ramsey. Discrete Mathematics, 108:59–62.

    Article  MathSciNet  Google Scholar 

  • Laczkovich, M. and Ruzsa, I.Z. (1997). The number of homothetic subsets, In: R.L. Graham et al. (eds.), The Mathematics of Paul Erdős. Vol. II, pp. 294–302. Algorithms and Combinatorics, vol. 14, Springer-Verlag.

    Google Scholar 

  • Matoušek, J. (1993). Range searching with efficient hierarchical cuttings. Discrete and Computational Geometry, 10:157–182.

    MathSciNet  Google Scholar 

  • Moser, L. (1952). On different distances determined by n points. American Mathematical Monthly, 59:85–91.

    Article  MATH  MathSciNet  Google Scholar 

  • Pach, J. and Agarwal, P.K. (1995). Combinatorial Geometry. Wiley, New York.

    Google Scholar 

  • Pach, J. and Sharir, M. (1992). Repeated angles in the plane and related problems. Journal of Combinatorial Theory. Series A, 59:12–22.

    Article  MathSciNet  Google Scholar 

  • Pach, J. and Sharir, M. (2004). Incidences. In: J. Pach (ed.), Towards a Theory of Geometric Graphs, pp. 283–293. Contemporary Mathematics, vol. 342, American Mathematical Society, Providence, RI.

    Google Scholar 

  • Rado, R. (1943). Note on combinatorial analysis. Proceedings of the London Mathematical Society, 48:122–160.

    MATH  MathSciNet  Google Scholar 

  • de Rezende, P.J. and Lee, D.T. (1995). Point set pattern matching in d-dimensions. Algorithmica, 13:387–404.

    Article  MathSciNet  Google Scholar 

  • Solymosi, J. and Tóth, C.D. (2001). Distinct distances in the plane. Discrete and Computational Geometry, 25:629–634.

    MathSciNet  Google Scholar 

  • Solymosi, J. and Vu, V. (2005). Near optimal bounds for the number of distinct distances in high dimensions. Forthcoming in Combinatorica.

    Google Scholar 

  • Spencer, J., Szemerédi, E., and Trotter, W.T. (1984). Unit distances in the Euclidean plane. In: B. Bollobás (ed.), Graph Theory and Combinatorics, pp. 293–304. Academic Press, London, 1984

    Google Scholar 

  • Straus, E.G. (1978). Some extremal problems in combinatorial geometry. In: Combinatorial Mathematics, pp. 308–312. Lecture Notes in Mathematics, vol. 686.

    MATH  MathSciNet  Google Scholar 

  • Székely, L.A. (1997). Crossing numbers and hard Erdős problems in discrete geometry. Combinatorics, Probability and Computing, 6:353–358.

    Article  MATH  MathSciNet  Google Scholar 

  • Tardos, G. (2003). On distinct sums and distinct distances. Advances in Mathematics, 180:275–289.

    Article  MATH  MathSciNet  Google Scholar 

  • Ungar, P. (1982). 2N noncollinear points determine at least 2N directions. Journal of Combinatorial Theory. Series A, 33:343–347.

    Article  MATH  MathSciNet  Google Scholar 

  • van Wamelen, P. (1999). The maximum number of unit distances among n points in dimension four. Beiträge Algebra Geometrie, 40:475–477.

    MATH  Google Scholar 

  • Witt, E. (1952). Ein kombinatorischer Satz der Elementargeometrie. Mathematische Nachrichten, 6:261–262.

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Brass, P., Pach, J. (2005). Problems and Results on Geometric Patterns. In: Avis, D., Hertz, A., Marcotte, O. (eds) Graph Theory and Combinatorial Optimization. Springer, Boston, MA. https://doi.org/10.1007/0-387-25592-3_2

Download citation

Publish with us

Policies and ethics