Skip to main content

The Role of Complement in EAE

  • Chapter

Abstract

The complement system is an essential effector of the humoral and cellular immunity involved in cytolysis and immune/inflammatory responses. Complement participates in host defence against pathogens by triggering the formation of the membrane attack complex. Complement opsonins (Clq, C3b, iC3b) interact with surface complement receptors to promote phagocytosis while complement anaphylatoxins C3a and C5a initiate local pro-inflammatory responses that, ultimately, contribute to the protection and healing of the host. However, activation of complement to an inappropriate extent has been proposed to promote tissue injury. There is now compelling evidence that complement is implicated in the pathogenesis of several neurological disorders including the human demyelinating disease multiple sclerosis and experimental allergic encephalomyelitis (EAE), an animal model that mimics the demyelination seen in multiple sclerosis. Deposition of complement proteins correlates with areas of demyelination and axonal loss observed in EAE and complement inhibition ameliorates disease. However, the precise mechanisms underlying complement-mediated damage are still largely unknown. The recent use of transgenic animals is beginning to shed light on the relative contributions of the different complement activation pathways in the pathogenesis of experimental demyelination. These studies will provide the basis for the development of novel drugs aiming to inhibit complement in the the central nervous system.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Frank, M. M., and L. F. Fries. 1991. The role of complement in inflammation and phagocytosis. Immunol Today 12:322.

    PubMed  CAS  Google Scholar 

  2. Sunyer, J. O., I. K. Zarkadis, and J. D. Lambris. 1998. Complement diversity: a mechanism for generating immune diversity? Immunol Today 19:519.

    PubMed  CAS  Google Scholar 

  3. Korb, L. C., and J. M. Ahearn. 1997. Clq binds directly and specifically to surface blebs of apoptotic human keratinocytes: complement deficiency and systemic lupus erythematosus revisited. J Immunol 158:4525.

    PubMed  CAS  Google Scholar 

  4. Mevorach, D., J. O. Mascarenhas, D. Gershov, and K. B. Elkon. 1998. Complement-dependent clearance of apoptotic cells by human macrophages. J Exp Med 188:2313.

    PubMed  CAS  Google Scholar 

  5. Taylor, P. R., A. Carugati, V. A. Fadok, H. T. Cook, M. Andrews, M. C. Carroll, J. S. Savill, P. M. Henson, M. Botto, and M. J. Walport. 2000. A hierarchical role for classical pathway complement proteins in the clearance of apoptotic cells in vivo. J Exp Med 192:359.

    PubMed  CAS  Google Scholar 

  6. Botto, M., C. Dell’Agnola, A. E. Bygrave, E. M. Thompson, H. T. Cook, F. Petry, M. Loos, P. P. Pandolfi, and M. J. Walport. 1998. Homozygous Clq deficiency causes glomerulonephritis associated with multiple apoptotic bodies. Nat Genet 19:56.

    PubMed  CAS  Google Scholar 

  7. McGreal, E. P., N. Ikewaki, H. Akatsu, B. P. Morgan, and P. Gasque. 2002. Human ClqRp is identical with CD93 and the mNI-11 antigen but does not bind Clq. J Immunol 168:5222.

    PubMed  CAS  Google Scholar 

  8. Guan, E., S. L. Robinson, E. B. Goodman, and A. J. Tenner. 1994. Cell-surface protein identified on phagocytic cells modulates the Clq-mediated enhancement of phagocytosis. J Immunol 152:4005.

    PubMed  CAS  Google Scholar 

  9. Ehlers, M. R. 2000. CR3: a general purpose adhesion-recognition receptor essential for innate immunity. Microbes Infect 2:289.

    PubMed  CAS  Google Scholar 

  10. Krych-Goldberg, M., and J. P. Atkinson. 2001. Structure-function relationships of complement receptor type 1. Immunol Rev 180:112.

    PubMed  CAS  Google Scholar 

  11. Morgan, B. P., and C. L. Harris. 1999. Complement Regulatory Proteins. Academic Press, San Diego.

    Google Scholar 

  12. Morgan, B. P. 1989. Complement membrane attack on nucleated cells: resistance, recovery and non-lethal effects. Biochem J 264:1.

    PubMed  CAS  Google Scholar 

  13. Rus, H. G., F. I. Niculescu, and M. L. Shin. 2001. Role of the C5b-9 complement complex in cell cycle and apoptosis. Immunol Rev 180:49.

    PubMed  CAS  Google Scholar 

  14. Wiedmer, T., B. Ando, and P. J. Sims. 1987. Complement C5b-9-stimulated platelet secretion is associated with a Ca2+-initiated activation of cellular protein kinases. J Biol Chem 262:13674.

    PubMed  CAS  Google Scholar 

  15. Niculescu, F., H. Rus, S. Shin, T. Lang, and M. L. Shin. 1993. Generation of diacylglycerol and ceramide during homologous complement activation. J Immunol 150:214.

    PubMed  CAS  Google Scholar 

  16. Imagawa, D. K., N. E. Osifchin, W. A. Paznekas, M. L. Shin, and M. M. Mayer. 1983. Consequences of cell membrane attack by complement: release of arachidonate and formation of inflammatory derivatives. Proc Natl Acad Sci U S A 80:6647.

    PubMed  CAS  Google Scholar 

  17. Shirazi, Y., F. A. McMorris, and M. L. Shin. 1989. Arachidonic acid mobilization and phosphoinositide turnover by the terminal complement complex, C5b-9, in rat oligodendrocyte x C6 glioma cell hybrids. J Immunol 142:4385.

    PubMed  CAS  Google Scholar 

  18. Shirazi, Y., D. K. Imagawa, and M. L. Shin. 1987. Release of leukotriene B4 from sublethally injured oligodendrocytes by terminal complement complexes. J Neurochem 48:271.

    PubMed  CAS  Google Scholar 

  19. Carney, D. F., T. J. Lang, and M. L. Shin. 1990. Multiple signal messengers generated by terminal complement complexes and their role in terminal complement complex elimination. J Immunol 145:623.

    PubMed  CAS  Google Scholar 

  20. Mason, J. C., H. Yarwood, K. Sugars, B. P. Morgan, K. A. Davies, and D. O. Haskard. 1999. Induction of decay-accelerating factor by cytokines or the membrane-attack complex protects vascular endothelial cells against complement deposition. Blood 94:1673.

    PubMed  CAS  Google Scholar 

  21. Ember, J. A., M. A. Jagels, and T. E. Hugli. 1998. Characterization of complement anaphylatoxins and biological responses. In The Human Complement System in Health and Disease. J. E. Volanakis, and M. M. Frank, eds. Marcel Dekker, New York, NY, p. 241.

    Google Scholar 

  22. Ames, R. S., Y. Li, H. M. Sarau, P. Nuthulaganti, J. J. Foley, C. Ellis, Z. Zeng, K. Su, A. J. Jurewicz, R. P. Hertzberg, D. J. Bergsma, and C. Kumar. 1996. Molecular cloning and characterization of the human anaphylatoxin C3a receptor. J Biol Chem 271:20231.

    PubMed  CAS  Google Scholar 

  23. Crass, T., U. Raffetseder, U. Martin, M. Grove, A. Klos, J. Kohl, and W. Bautsch. 1996. Expression cloning of the human C3a anaphylatoxin receptor (C3aR) from differentiated U-937 cells. Eur J Immunol 26:1944.

    PubMed  CAS  Google Scholar 

  24. Gerard, N. P., and C. Gerard. 1991. The chemotactic receptor for human C5a anaphylatoxin. Nature 349:614.

    PubMed  CAS  Google Scholar 

  25. Boulay, F., L. Mery, M. Tardif, L. Brouchon, and P. Vignais. 1991. Expression cloning of a receptor for C5a anaphylatoxin on differentiated HL-60 cells. Biochemistry 30:2993.

    PubMed  CAS  Google Scholar 

  26. Roglic, A., E. R. Prossnitz, S. L. Cavanagh, Z. Pan, A. Zou, and R. D. Ye. 1996. cDNA cloning of a novel G protein-coupled receptor with a large extracellular loop structure. Biochim Biophys Acta 1305:39.

    PubMed  Google Scholar 

  27. Kildsgaard, J., T. J. Hollmann, K. W. Matthews, K. Bian, F. Murad, and R. A. Wetsel. 2000. Cutting edge: targeted disruption of the C3a receptor gene demonstrates a novel protective anti-inflammatory role for C3a in endotoxin-shock. J Immunol 165:5406.

    PubMed  CAS  Google Scholar 

  28. Morgan, B. P., and P. Gasque. 1996. Expression of complement in the brain: role in health and disease. Immunol Today 17:461.

    PubMed  CAS  Google Scholar 

  29. Levi-Strauss, M., and M. Mallat. 1987. Primary cultures of murine astrocytes produce C3 and factor B, two components of the alternative pathway of complement activation. J Immunol 139:2361.

    PubMed  CAS  Google Scholar 

  30. Gasque, P., Y. D. Dean, E. P. McGreal, J. van Beek, and B. P. Morgan. 2000. Complement components of the innate immune system in health and disease in the CNS. Immunopharmacology 49:171.

    PubMed  CAS  Google Scholar 

  31. Barnum, S. R. 1995. Complement biosynthesis in the central nervous system. Crit Rev Oral Biol Med 6:132.

    PubMed  CAS  Google Scholar 

  32. Gasque, P., M. Fontaine, and B. P. Morgan. 1995. Complement expression in human brain. Biosynthesis of terminal pathway components and regulators in human glial cells and cell lines. J Immunol 154:4726.

    PubMed  CAS  Google Scholar 

  33. Gasque, P., A. Ischenko, J. Legoedec, C. Mauger, M. T. Schouft, and M. Fontaine. 1993. Expression of the complement classical pathway by human glioma in culture. A model for complement expression by nerve cells. J Biol Chem 268:25068.

    PubMed  CAS  Google Scholar 

  34. Gasque, P., N. Julen, A. M. Ischenko, C. Picot, C. Mauger, C. Chauzy, J. Ripoche, and M. Fontaine. 1992. Expression of complement components of the alternative pathway by glioma cell lines. J Immunol 149:1381.

    PubMed  CAS  Google Scholar 

  35. Thomas, A., P. Gasque, D. Vaudry, B. Gonzalez, and M. Fontaine. 2000. Expression of a complete and functional complement system by human neuronal cells in vitro. Int Immunol 12:1015.

    PubMed  CAS  Google Scholar 

  36. van Beek, J., P. Chan, M. Bernaudin, E. Petit, E. T. MacKenzie, and M. Fontaine. 2000. Glial responses, clusterin, and complement in permanent focal cerebral ischemia in the mouse. Glia 31:39.

    PubMed  Google Scholar 

  37. Shen, Y., R. Li, E. G. McGeer, and P. L. McGeer. 1997. Neuronal expression of mRNAs for complement proteins of the classical pathway in Alzheimer brain. Brain Res 769:391.

    PubMed  CAS  Google Scholar 

  38. Fischer, B., H. Schmoll, P. Riederer, J. Bauer, D. Platt, and A. Popa-Wagner. 1995. Complement Clq and C3 mRNA expression in the frontal cortex of Alzheimer’s patients. J Mol Med 73:465.

    PubMed  CAS  Google Scholar 

  39. Dietzschold, B., W. Schwaeble, M. K. Schafer, D. C. Hooper, Y. M. Zehng, F. Petry, H. Sheng, T. Fink, M. Loos, H. Koprowski, and et al. 1995. Expression of Clq, a subcomponent of the rat complement system, is dramatically enhanced in brains of rats with either Borna disease or experimental allergic encephalomyelitis. J Neurol Sci 130:11.

    PubMed  CAS  Google Scholar 

  40. Zwirner, J., O. Gotze, G. Begemann, A. Kapp, K. Kirchhoff, and T. Werfel. 1999. Evaluation of C3a receptor expression on human leucocytes by the use of novel monoclonal antibodies. Immunology 97:166.

    PubMed  CAS  Google Scholar 

  41. Martin, U., D. Bock, L. Arseniev, M. A. Tornetta, R. S. Ames, W. Bautsch, J. Kohl, A. Ganser, and A. Klos. 1997. The human C3a receptor is expressed on neutrophils and monocytes, but not on B or T lymphocytes. J Exp Med 186:199.

    PubMed  CAS  Google Scholar 

  42. Daffern, P. J., P. H. Pfeifer, J. A. Ember, and T. E. Hugli. 1995. C3a is a chemotaxin for human eosinophils but not for neutrophils. I. C3a stimulation of neutrophils is secondary to eosinophil activation. J Exp Med 181:2119.

    PubMed  CAS  Google Scholar 

  43. Ember, J. A., and T. E. Hugli. 1997. Complement factors and their receptors. Immunopharmacology 38:3.

    PubMed  CAS  Google Scholar 

  44. Zwirner, J., A. Fayyazi, and O. Gotze. 1999. Expression of the anaphylatoxin C5a receptor in non-myeloid cells. Mol Immunol 36:877.

    PubMed  CAS  Google Scholar 

  45. Wetsel, R. A. 1995. Structure, function and cellular expression of complement anaphylatoxin receptors. Curr Opin Immunol 7:48.

    PubMed  CAS  Google Scholar 

  46. van Beek, J., M. Bernaudin, E. Petit, P. Gasque, A. Nouvelot, E. T. MacKenzie, and M. Fontaine. 2000. Expression of receptors for complement anaphylatoxins C3a and C5a following permanent focal cerebral ischemia in the mouse. Exp Neurol 161:373.

    PubMed  Google Scholar 

  47. Barnum, S. R., R. S. Ames, P. R. Maycox, S. J. Hadingham, J. Meakin, D. Harrison, and A. A. Parsons. 2002. Expression of the complement C3a and C5a receptors after permanent focal ischemia: An alternative interpretation. Glia 38:169.

    PubMed  Google Scholar 

  48. Stahel, P. F., K. Kariya, E. Shohami, S. R. Barnum, H. Eugster, O. Trentz, T. Kossmann, and M. C. Morganti-Kossmann. 2000. Intracerebral complement C5a receptor (CD88) expression is regulated by TNF and lymphotoxin-alpha following closed head injury in mice. J Neuroimmunol 109:164.

    PubMed  CAS  Google Scholar 

  49. Stahel, P. F., K. Frei, H. P. Eugster, A. Fontana, K. M. Hummel, R. A. Wetsel, R. S. Ames, and S. R. Barnum. 1997. TNF-alpha-mediated expression of the receptor for anaphylatoxin C5a on neurons in experimental Listeria meningoencephalitis. J Immunol 159:861.

    PubMed  CAS  Google Scholar 

  50. Gasque, P., S. K. Singhrao, J. W. Neal, P. Wang, S. Sayah, M. Fontaine, and B. P. Morgan. 1998. The receptor for complement anaphylatoxin C3a is expressed by myeloid cells and nonmyeloid cells in inflamed human central nervous system: analysis in multiple sclerosis and bacterial meningitis. J Immunol 160:3543.

    PubMed  CAS  Google Scholar 

  51. Gasque, P., S. K. Singhrao, J. W. Neal, O. Gotze, and B. P. Morgan. 1997. Expression of the receptor for complement C5a (CD88) is up-regulated on reactive astrocytes, microglia, and endothelial cells in the inflamed human central nervous system. Am J Pathol 150:31.

    PubMed  CAS  Google Scholar 

  52. Sayah, S., A. M. Ischenko, A. Zhakhov, A. S. Bonnard, and M. Fontaine. 1999. Expression of cytokines by human astrocytomas following stimulation by C3a and C5a anaphylatoxins: specific increase in interleukin-6 mRNA expression. J Neurochem 72:2426.

    PubMed  CAS  Google Scholar 

  53. Farkas, I., L. Baranyi, Z. S. Liposits, T. Yamamoto, and H. Okada. 1998. Complement C5a anaphylatoxin fragment causes apoptosis in TGW neuroblastoma cells. Neuroscience 86:903.

    PubMed  CAS  Google Scholar 

  54. Farkas, I., L. Baranyi, M. Takahashi, A. Fukuda, Z. Liposits, T. Yamamoto, and H. Okada. 1998. A neuronal C5a receptor and an associated apoptotic signal transduction pathway. J Physiol 507:679.

    PubMed  CAS  Google Scholar 

  55. van Beek, J., O. Nicole, C. Ali, A. Ischenko, E. T. MacKenzie, A. Buisson, and M. Fontaine. 2001. Complement anaphylatoxin C3a is selectively protective against NMDA-induced neuronal cell death. Neuroreport 12:289.

    PubMed  Google Scholar 

  56. Appel, S. H., and M. B. Bornstein. 1964. The application of tissue culture to the study of experimental allergic encephalomyelitis. II. Serum factors reponsible for demyelination. J Exp Med 119:119.

    Google Scholar 

  57. Levine, S., C. G. Cochrane, C. B. Carpenter, and P. O. Behan. 1971. Allergic encephalomyelitis: effect of complement depletion with cobra venom. Proc Soc Exp Biol Med 138:285.

    PubMed  CAS  Google Scholar 

  58. Morariu, M. A., and A. P. Dalmasso. 1978. Experimental allergic encephalomyelitis in cobra venom factor-treated and C4-deficient guinea pigs. Ann Neurol 4:427.

    PubMed  CAS  Google Scholar 

  59. Linington, C., B. P. Morgan, N. J. Scolding, P. Wilkins, S. Piddlesden, and D. A. Compston. 1989. The role of complement in the pathogenesis of experimental allergic encephalomyelitis. Brain 112:895.

    PubMed  Google Scholar 

  60. Piddlesden, S. J., M. K. Storch, M. Hibbs, A. M. Freeman, H. Lassmann, and B. P. Morgan. 1994. Soluble recombinant complement receptor 1 inhibits inflammation and demyelination in antibody-mediated demyelinating experimental allergic encephalomyelitis. J Immunol 152:5477.

    PubMed  CAS  Google Scholar 

  61. Davoust, N., S. Nataf, R. Reiman, M. V. Holers, I. L. Campbell, and S. R. Barnum. 1999. Central nervous system-targeted expression of the complement inhibitor sCrry prevents experimental allergic encephalomyelitis. J Immunol 163:6551.

    PubMed  CAS  Google Scholar 

  62. Nataf, S., S. L. Carroll, R. A. Wetsel, A. J. Szalai, and S. R. Barnum. 2000. Attenuation of experimental autoimmune demyelination in complement-deficient mice. J Immunol 165:5867.

    PubMed  CAS  Google Scholar 

  63. Calida, D. M., C. Constantinescu, E. Purev, G. X. Zhang, E. S. Ventura, E. Lavi, and A. Rostami. 2001. Cutting edge: C3, a key component of complement activation, is not required for the development of myelin oligodendrocyte glycoprotein peptide-induced experimental autoimmune encephalomyelitis in mice. J Immunol 166:723.

    PubMed  CAS  Google Scholar 

  64. Linington, C., H. Lassmann, B. P. Morgan, and D. A. Compston. 1989. Immunohistochemical localisation of terminal complement component C9 in experimental allergic encephalomyelitis. Acta Neuropathol (Berl) 79:78.

    CAS  Google Scholar 

  65. ’t Hart, B. A., J. Bauer, H. J. Muller, B. Melchers, K. Nicolay, H. Brok, R. E. Bontrop, H. Lassmann, and L. Massacesi. 1998. Histopathological characterization of magnetic resonance imaging-detectable brain white matter lesions in a primate model of multiple sclerosis: a correlative study in the experimental autoimmune encephalomyelitis model in common marmosets (Callithrix jacchus). Am J Pathol 153:649.

    PubMed  CAS  Google Scholar 

  66. ’t Hart, B. A., M. van Meurs, H. P. Brok, L. Massacesi, J. Bauer, L. Boon, R. E. Bontrop, and J. D. Laman. 2000. A new primate model for multiple sclerosis in the common marmoset. Immunol Today 21:290.

    PubMed  Google Scholar 

  67. Brok, H. P., J. Bauer, M. Jonker, E. Blezer, S. Amor, R. E. Bontrop, J. D. Laman, and B. A. t Hart. 2001. Non-human primate models of multiple sclerosis. Immunol Rev 183:173.

    PubMed  CAS  Google Scholar 

  68. Kerlero de Rosbo, N., H. P. Brok, J. Bauer, J. F. Kaye, B. A. t Hart, and A. Ben-Nun. 2000. Rhesus monkeys are highly susceptible to experimental autoimmune encephalomyelitis induced by myelin oligodendrocyte glycoprotein: characterisation of immunodominant T-and B-cell epitopes. J Neuroimmunol 110:83.

    Google Scholar 

  69. van Beek, J., M. van Meurs, B. A. ’t Hart, H. Brok, J. W. Neal, B. P. Morgan, J. D. Laman, and P. Gasque. 2002. Decay-accelerating factor (CD55) is abundantly expressed by reactive neurons in response to chronic but not acute inflammatory insults associated with strong complement activation. Int Immunol 2:1364.

    Google Scholar 

  70. Link, H. 1972. Complement factors in multiple sclerosis. Acta Neurol Scand 48:521.

    PubMed  CAS  Google Scholar 

  71. Trouillas, P., J. Moindrot, H. Betuel, C. Quincy, G. Aimard, and M. Devic. 1976. Multiple sclerosis with reduced and with normal levels of complement in the blood. Clinical and genetic correlation. Rev Neurol (Paris) 132:684.

    CAS  Google Scholar 

  72. Morgan, B. P., A. K. Campbell, and D. A. Compston. 1984. Terminal component of complement (C9) in cerebrospinal fluid of patients with multiple sclerosis. Lancet 2:251.

    PubMed  CAS  Google Scholar 

  73. Sellebjerg, F., I. Jaliashvili, M. Christiansen, and P. Garred. 1998. Intrathecal activation of the complement system and disability in multiple sclerosis. J Neurol Sci 157:168.

    PubMed  CAS  Google Scholar 

  74. Compston, D. A., B. P. Morgan, A. K. Campbell, P. Wilkins, G. Cole, N. D. Thomas, and B. Jasani. 1989. Immunocytochemical localization of the terminal complement complex in multiple sclerosis. Neuropathol Appl Neurobiol 15:307.

    PubMed  CAS  Google Scholar 

  75. Storch, M. K., S. Piddlesden, M. Haltia, M. livanainen, P. Morgan, and H. Lassmann. 1998. Multiple sclerosis: in situ evidence for antibody-and complement-mediated demyelination. Ann Neurol 43:465.

    PubMed  CAS  Google Scholar 

  76. Lucchinetti, C., W. Bruck, J. Parisi, B. Scheithauer, M. Rodriguez, and H. Lassmann. 2000. Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707.

    PubMed  CAS  Google Scholar 

  77. Nataf, S., N. Davoust, and S. R. Barnum. 1998. Kinetics of anaphylatoxin C5a receptor expression during experimental allergic encephalomyelitis. J Neuroimmunol 91:147.

    PubMed  CAS  Google Scholar 

  78. Paradisis, P. M., I. L. Campbell, and S. R. Barnum. 1998. Elevated complement C5a receptor expression on neurons and glia in astrocyte-targeted interleukin-3 transgenic mice. Glia 24:338.

    PubMed  CAS  Google Scholar 

  79. Davoust, N., J. Jones, P. F. Stahel, R. S. Ames, and S. R. Barnum. 1999. Receptor for the C3a anaphylatoxin is expressed by neurons and glial cells. Glia 26:201.

    PubMed  CAS  Google Scholar 

  80. Reiman, R., C. Gerard, I. L. Campbell, and S. R. Barnum. 2002. Disruption of the C5a receptor gene fails to protect against experimental allergic encephalomyelitis. Eur J Immunol 32:1157.

    PubMed  CAS  Google Scholar 

  81. Xiao, B. G., C. Linington, and H. Link. 1991. Antibodies to myelin-oligodendrocyte glycoprotein in cerebrospinal fluid from patients with multiple sclerosis and controls. J Neuroimmunol 31:91.

    PubMed  CAS  Google Scholar 

  82. Raine, C. S., B. Cannella, S. L. Hauser, and C. P. Genain. 1999. Demyelination in primate autoimmune encephalomyelitis and acute multiple sclerosis lesions: a case for antigen-specific antibody mediation. Ann Neurol 46:144.

    PubMed  CAS  Google Scholar 

  83. Linington, C., M. Bradl, H. Lassmann, C. Brunner, and K. Vass. 1988. Augmentation of demyelination in rat acute allergic encephalomyelitis by circulating mouse monoclonal antibodies directed against a myelin/oligodendrocyte glycoprotein. Am J Pathol 130:443.

    PubMed  CAS  Google Scholar 

  84. Piddlesden, S. J., H. Lassmann, F. Zimprich, B. P. Morgan, and C. Linington. 1993. The demyelinating potential of antibodies to myelin oligodendrocyte glycoprotein is related to their ability to fix complement. Am J Pathol 143:555.

    PubMed  CAS  Google Scholar 

  85. Gay, F. W., T. J. Drye, G. W. Dick, and M. M. Esiri. 1997. The application of multifactorial cluster analysis in the staging of plaques in early multiple sclerosis. Identification and characterization of the primary demyelinating lesion. Brain 120:1461.

    PubMed  Google Scholar 

  86. Goldenberg, P. Z., R. A. Troiano, E. E. Kwon, and J. W. Prineas. 1990. Sera from MS patients and normal controls opsonize myelin. Neurosci Lett 109:353.

    PubMed  CAS  Google Scholar 

  87. Vanguri, P., C. L. Koski, B. Silverman, and M. L. Shin. 1982. Complement activation by isolated myelin: activation of the classical pathway in the absence of myelin-specific antibodies. Proc Natl Acad Sci U S A 79:3290.

    PubMed  CAS  Google Scholar 

  88. Silverman, B. A., D. F. Carney, C. A. Johnston, P. Vanguri, and M. L. Shin. 1984. Isolation of membrane attack complex of complement from myelin membranes treated with serum complement. J Neurochem 42:1024.

    PubMed  CAS  Google Scholar 

  89. Hilton, A. A., A. J. Slavin, D. J. Hilton, and C. C. Bernard. 1995. Characterization of cDNA and genomic clones encoding human myelin oligodendrocyte glycoprotein. J Neurochem 65:309.

    PubMed  CAS  Google Scholar 

  90. Johns, T. G., and C. C. Bernard. 1997. Binding of complement component Clq to myelin oligodendrocyte glycoprotein: a novel mechanism for regulating CNS inflammation. Mol Immunol 34:33.

    PubMed  CAS  Google Scholar 

  91. Walsh, M. J., and J. M. Murray. 1998. Dual implication of 2′,3′-cyclic nucleotide 3′ phosphodiesterase as major autoantigen and C3 complement-binding protein in the pathogenesis of multiple sclerosis. J Clin Invest 101:1923.

    PubMed  CAS  Google Scholar 

  92. Scolding, N., C. Linington, and A. Compston. 1989. Immune mechanisms in the pathogenesis of demyelinating diseases. Autoimmunity 4:131.

    PubMed  CAS  Google Scholar 

  93. Scolding, N. J., B. P. Morgan, W. A. Houston, C. Linington, A. K. Campbell, and D. A. Compston. 1989. Vesicular removal by oligodendrocytes of membrane attack complexes formed by activated complement. Nature 339:620.

    PubMed  CAS  Google Scholar 

  94. Zajicek, J., M. Wing, J. Skepper, and A. Compston. 1995. Human oligodendrocytes are not sensitive to complement. A study of CD59 expression in the human central nervous system. Lab Invest 73:128.

    PubMed  CAS  Google Scholar 

  95. Gasque, P., and B. P. Morgan. 1996. Complement regulatory protein expression by a human oligodendrocyte cell line: cytokine regulation and comparison with astrocytes. Immunology 89:338.

    PubMed  CAS  Google Scholar 

  96. Scolding, N. J., B. P. Morgan, and D. A. Compston. 1998. The expression of complement regulatory proteins by adult human oligodendrocytes. J Neurolmmunol 84:69.

    CAS  Google Scholar 

  97. Smith, M. E. 1999. Phagocytosis of myelin in demyelinative disease: a review. Neurochem Res 24:261.

    PubMed  CAS  Google Scholar 

  98. Mead, R. J., S. K. Singhrao, J. W. Neal, H. Lassmann, and B. P. Morgan. 2002. The membrane attack complex of complement causes severe demyelination associated with acute axonal injury. J Immunol 168:458.

    PubMed  CAS  Google Scholar 

  99. Mead, R. J., J. W. Neal, and B. P. Morgan. 2002. CD59-deficiency exacerbates clinical disease and central nervous system inflammation in murine experimental allergic encephalomyelitis. Int Immunol 2:1248.

    Google Scholar 

  100. Kidd, D., F. Barkhof, R. McConnell, P. R. Algra, I. V. Allen, and T. Revesz. 1999. Cortical lesions in multiple sclerosis. Brain 122:17.

    PubMed  Google Scholar 

  101. Bjartmar, C., and B. D. Trapp. 2001. Axonal and neuronal degeneration in multiple sclerosis: mechanisms and functional consequences. Curr Opin Neurol 14:271.

    PubMed  CAS  Google Scholar 

  102. Ferguson, B., M. K. Matyszak, M. M. Esiri, and V. H. Perry. 1997. Axonal damage in acute multiple sclerosis lesions. Brain 120:393.

    PubMed  Google Scholar 

  103. White, S. R., G. K. Samathanam, R. M. Bowker, and M. W. Wessendorf. 1990. Damage to bulbospinal serotonin-, tyrosine hydroxylase-, and TRH-containing axons occurs early in the development of experimental allergic encephalomyelitis in rats. J Neurosci Res 27:89.

    PubMed  CAS  Google Scholar 

  104. Kornek, B., M. K. Storch, R. Weissert, E. Wallstroem, A. Stefferl, T. Olsson, C. Linington, M. Schmidbauer, and H. Lassmann. 2000. Multiple sclerosis and chronic autoimmune encephalomyelitis: a comparative quantitative study of axonal injury in active, inactive, and remyelinated lesions. Am J Pathol 157:267.

    PubMed  CAS  Google Scholar 

  105. Mancardi, G., B. Hart, L. Roccatagliata, H. Brok, D. Giunti, R. Bontrop, L. Massacesi, E. Capello, and A. Uccelli. 2001. Demyelination and axonal damage in a non-human primate model of multiple sclerosis. J Neurol Sci 184:41.

    PubMed  CAS  Google Scholar 

  106. Singhrao, S. K., J. W. Neal, N. K. Rushmere, B. P. Morgan, and P. Gasque. 2000. Spontaneous classical pathway activation and deficiency of membrane regulators render human neurons susceptible to complement lysis. Am J Pathol 157:905.

    PubMed  CAS  Google Scholar 

  107. Singhrao, S. K., J. W. Neal, N. K. Rushmere, B. P. Morgan, and P. Gasque. 1999. Differential expression of individual complement regulators in the brain and choroid plexus. Lab Invest 79:1247.

    PubMed  CAS  Google Scholar 

  108. Stadelmann, C., M. Kerschensteiner, T. Misgeld, W. Bruck, R. Hohlfeld, and H. Lassmann. 2002. BDNF and gpl45trkB in multiple sclerosis brain lesions: neuroprotective interactions between immune and neuronal cells? Brain 125:75.

    PubMed  Google Scholar 

  109. Rus, H. G., F. Niculescu, and M. L. Shin. 1996. Sublytic complement attack induces cell cycle in oligodendrocytes. J Immunol 156:4892.

    PubMed  CAS  Google Scholar 

  110. Rus, H., F. Niculescu, T. Badea, and M. L. Shin. 1997. Terminal complement complexes induce cell cycle entry in oligodendrocytes through mitogen activated protein kinase pathway. Immunopharmacology 38:177.

    PubMed  CAS  Google Scholar 

  111. Badea, T. C., F. I. Niculescu, L. Soane, M. L. Shin, and H. Rus. 1998. Molecular cloning and characterization of RGC-32, a novel gene induced by complement activation in oligodendrocytes. J Biol Chem 273:26977.

    PubMed  CAS  Google Scholar 

  112. Soane, L., H. Rus, F. Niculescu, and M. L. Shin. 1999. Inhibition of oligodendrocyte apoptosis by sublytic C5b-9 is associated with enhanced synthesis of bcl-2 and mediated by inhibition of caspase-3 activation. J Immunol 163:6132.

    PubMed  CAS  Google Scholar 

  113. Rus, H., S. Weerth, L. Soane, F. Niculescu, V. Rus, C. S. Raine, and M. L. Shin. 2002. The effect of terminal complement complex on apoptosis gene expression in experimental autoimmune encephalomyelitis. Int Immunol 2:1248.

    Google Scholar 

  114. Morgan, B. P. 1996. Intervention in the complement system: a therapeutic strategy in inflammation. Biochem Soc Trans 24:224.

    PubMed  CAS  Google Scholar 

  115. McGrath, Y., G. W. Wilkinson, O. B. Spiller, and B. P. Morgan. 1999. Development of adenovirus vectors encoding rat complement regulators for use in therapy in rodent models of inflammatory diseases. J Immunol 163:6834.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

van Beek, J., Morgan, B.P. (2005). The Role of Complement in EAE. In: Lavi, E., Constantinescu, C.S. (eds) Experimental Models of Multiple Sclerosis. Springer, Boston, MA. https://doi.org/10.1007/0-387-25518-4_12

Download citation

Publish with us

Policies and ethics