Skip to main content

On the Role of Neurotrophins in Dendritic Calcium Signaling

Implications for hippocampal transsynaptic plasticity

  • Chapter
Book cover Synaptic Plasticity and Transsynaptic Signaling

6. Conclusions

In addition to its strong presynaptic actions on quantal neurotransmitter release, the regulation of the spatial and temporal patterns of postsynaptic Ca2+ elevations by BDNF is also a likely mechanism for its modulation of synaptic plasticity. The intracellular signaling cascades activated by TrkB receptors include several well-characterized protein kinases that target most of the routes of Ca2+ entry into hippocampal neurons. In addition, TrkB activation leads to IP3 formation, strongly arguing for direct Ca2+ mobilization from intracellular Ca2+ stores. Lastly, depletion of intracellular Ca2+ stores is associated with the activation of plasma membrane non-selective cationic currents thought to mediate Ca2+ store refilling. These membrane currents mediated by members of the TRPC family of ion channels not only represent novel downstream effects of neurotrophin action, but also are intriguing points of convergence with other intracellular signaling cascades, such as those triggered by group-I metabotropic glutamate receptors. The information gained from future experiments in this rapidly evolving field will integrate the actions of BDNF at synapses with the requirement of dendritic Ca2+ signals necessary for the induction of synaptic plasticity. Ultimately, the challenge ahead is to assimilate the varied functional and structural consequences of BDNF signaling through TrkB receptors at both sides of the synaptic cleft at excitatory synapses in the hippocampus with its intriguing role in the consolidation of hippocampal-dependent learning. Indeed, BDNF represents the prototypical example of a consolidation factor necessary for trans-synaptic plasticity at hippocampal synapses.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8. References

  • Ahlijanian MK, Westenbroek RE, Catterall WA (1990) Subunit structure and localization of dihydropyridine-sensitive calcium channels in mammalian brain, spinal cord, and retina, Neuron 4:819–832.

    Article  PubMed  CAS  Google Scholar 

  • Alford S, Frenguelly BG, Schofield JG, Collingridge GL (1993) Characterization of Ca2+ signals induced in hippocampal CA1 neurones by the synaptic activation of NMDA receptors, J. Physiol. 469:693–716.

    PubMed  CAS  Google Scholar 

  • Ascher P, Bregestovsky P, Nowak L (1988) N-methyl-D-aspartate-activated channels of mouse central neurones in magnesium-free solutions, J. Physiol. 399:207–226.

    PubMed  CAS  Google Scholar 

  • Baba A, Yasui T, Fujisawa S, Yamada RX, Yamada MK, Nishiyama N, Matsuki N, Ikegaya Y (2003) Activityevoked capacitative Ca2+ entry: implications in synaptic plasticity, J. Neurosci. 23:7737–7741.

    PubMed  CAS  Google Scholar 

  • Bading H, Ginty DD, Greenberg ME (1993) Regulation of gene expression in hippocampal neumons by distinct calcium signaling pathways, Science 260:181–186.

    PubMed  CAS  Google Scholar 

  • Baldelli P, Forni PE, Carbone E (2000) BDNF, NT-3 and NGF induce distinct new Ca2+ channel synthesis in developing hippocampal neurons, Eur J Neurosci 12:4017–4032.

    Article  PubMed  CAS  Google Scholar 

  • Baldelli P, Magnelli V, Carbone E (1999) Selective up-regulation of P-and R-type Ca2+ channels in rat embryo motoneurons by BDNF, Eur. J. Neurosci. 11:1127–1133.

    Article  PubMed  CAS  Google Scholar 

  • Barde Y, (1989) Trophic factors and neuronal survival, Neuron 2:1525–1534.

    Article  PubMed  CAS  Google Scholar 

  • Behar TN, Dugich-Djordjevic MM, Li YX, Ma W, Somogyi R, Wen X, Brown E, Scott C, Mckay RD, Barker JL (1997) Neurotrophins stimulate chemotaxis of embryonic cortical neurons, Eur. J. Neurosci. 9:2561–2570.

    Article  PubMed  CAS  Google Scholar 

  • Berninger B, Garcia DE, Inagaki N, Hahnel C, Lindholm D (1993) BDNF and NT-3 induce intracellular Ca2+ elevation in hippocampal neurones, Neuroreport 4:1303–1306.

    PubMed  CAS  Google Scholar 

  • Berninger B, Poo M (1996) Fast actions of neurotrophic factors, Curr. Opin. Neurobiol. 6:324–330.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ (1995) Capacitative calcium entry, Biochem. J. 312:1–11.

    PubMed  CAS  Google Scholar 

  • Berridge MJ (1998) Neuronal calcium signaling, Neuron 21:13–26.

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Lipp P, Bootman MD (2000) The versatility and universality of calcium signalling, Nat. Rev. Mol. Cell Biol. 1:11–21.

    Article  PubMed  CAS  Google Scholar 

  • Bianchi R, Young SR, Wong RKS (1999) Group I mGluR activation causes voltage-dependent and — independent Ca2+ rises in hippocampal pyramidal cells, J. Neurophysiol. 81:2903–2913.

    PubMed  CAS  Google Scholar 

  • Birnbaumer L, Zhu X, Jiang M, Boulay G, Peyton M, Vannier B, Brown D, Platano D, Sadeghi H, Stefani E, Birnbaumer M (1996) On the molecular basis and regulation of cellular capacitative calcium entry: roles for Trp proteins, Proc. Natl. Acad. Sci. USA 93:15195–15202.

    Article  PubMed  CAS  Google Scholar 

  • Blum R, Kafitz KW, Konnerth A (2002) Neurotrophin-evoked depolarization requires the sodium channel Navl.9, Nature 419:687–693.

    Article  PubMed  CAS  Google Scholar 

  • Boulanger L, Poo MM (1999) Presynaptic depolarization facilitates neurotrophin-induced synaptic potentiation, Nat. Neurosci. 2:346–351.

    Article  PubMed  CAS  Google Scholar 

  • Bouron A (2000) Activation of a capacitative Ca2+ entry pathway by store depletion in cultured hippocampal neurones, FEBS Lett. 470:269–272.

    Article  PubMed  CAS  Google Scholar 

  • Canossa M, Griesbeck O, Berninger B, Campana G, Kolbeck R, Thoenen H (1997) Neurotrophin release by neurotrophins: implications for activity-dependent neuronal plasticity, Proc. Natl. Acad. Sci. USA 94:13279–13286.

    Article  PubMed  CAS  Google Scholar 

  • Chao MV (1992) Neurotrophin receptors: a window into neuronal differentiation, Neuron 9:583–593.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE (2003) TRP channels as cellular sensors, Nature 426:517–524.

    Article  PubMed  CAS  Google Scholar 

  • Clapham DE, Runnels LW, Strubing C (2001) The TRP ion channel family, Nat. Rev. Neurosci. 2:387–396.

    Article  PubMed  CAS  Google Scholar 

  • Conn PJ, Pin JP (1997) Pharmacology and functions of metabotropic glutamate receptors, Annu. Rev. Pharmacol, Toxicol. 37:205–237.

    Article  CAS  Google Scholar 

  • Dobrunz LE, Stevens CF (1997) Heterogeneity of release probability, facilitation, and depletion at central synapses, Neuron 18:995–1008.

    Article  PubMed  CAS  Google Scholar 

  • Dugich-Djordjevic MM, Peterson C, Isono F, Ohsawa F, Widmer HR, Denton TL, Bennett GL, Hefti F (1995) Immunohistochemical visualization of brain-derived neurotrophic factor in the rat brain, Eur. J. Neurosci. 7:1831–1839.

    Article  PubMed  CAS  Google Scholar 

  • Emptage N, Bliss TV, Fine A (1999) Single synaptic events evoke NMDA receptor-mediated release of calcium from internal stores in hippocampal dendritic spines, Neuron 22:115–124.

    Article  PubMed  CAS  Google Scholar 

  • Emptage NJ, Reid CA, Fine A (2001) Calcium stores in hippocampal synaptic boutons mediate short-term plasticity, store-operated Ca2+ entry, and spontaneous transmitter release, Neuron 29:197–208.

    Article  PubMed  CAS  Google Scholar 

  • Fagni L, Chavis P, Ango F, Bockaert J (2000) Complex interactions between mGluRs, intracellular Ca2+ stores and ion channels in neurons, Trends Neurosci. 23:80–88.

    Article  PubMed  CAS  Google Scholar 

  • Figurov A, Pozzo-Miller LD, Olafsson P, Wang T, Lu B (1996) Regulation of synaptic responses to highfrequency stimulation and LTP by neurotrophins in the hippocampus, Nature 381:706–709.

    Article  PubMed  CAS  Google Scholar 

  • Finkbeiner S, Tavazoie SF, Maloratsky A, Jacobs KM, Harris KM, Greenberg ME (1997) CREB: a major mediator of neuronal neurotrophin responses, Neuron 19:1031–1047.

    Article  PubMed  CAS  Google Scholar 

  • Fryer RH, Kaplan DR, Feinstein SC, Radeke MJ, Grayson DR, Kromer LF (1996) Developmental and mature expression of full-length and truncated TrkB receptors in the rat forebrain, J. Comp. Neurol. 374:21–40.

    Article  PubMed  CAS  Google Scholar 

  • Gaiddon C, Loeffler JP, Larmet Y (1996) Brain-derived neurotrophic factor stimulates AP-1 and cyclic AMP-responsive element dependent transcriptional activity in central nervous system neurons, J. Neurochem. 66:2279–2286.

    Article  PubMed  CAS  Google Scholar 

  • Ghosh A, Greenberg ME (1995) Calcium signaling in neurons: molecular mechanisms and cellular consequences, Science 268:239–247.

    PubMed  CAS  Google Scholar 

  • Gottschalk W, Pozzo-Miller LD, Figurov A, Lu B (1998) Presynaptic modulation of synaptic transmission and plasticity by brain-derived neurotrophic factor in the developing hippocampus, J. Neurosci. 18:6830–6839.

    PubMed  CAS  Google Scholar 

  • Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function, Science 259:780–785.

    PubMed  CAS  Google Scholar 

  • Harris KM, Sultan P (1995) Variation in the number, location and size of synaptic vesicles provides an anatomical basis for the nonuniform probability of release at hippocampal CA1 synapses, Neuropharmacology 34:1387–1395.

    Article  PubMed  CAS  Google Scholar 

  • Harvey J, Collingridge GL (1992) Thapsigargin blocks the induction of long-term potentiation in rat hippocampal slices, Neurosci. Lett. 139:197–200.

    Article  PubMed  CAS  Google Scholar 

  • Jaffe DB, Brown TH (1994) Metabotropic glutamate receptor activation induces calcium waves within hippocampal dendrites, J. Neurophysiol. 72:471–474.

    PubMed  CAS  Google Scholar 

  • Jaffe DB, Johnston D, Lasser-Ross N, Lisman JE, Miyakawa H, Ross WN (1992) The spread of Na+ spikes determines the pattern of dendritic Ca2+ entry into hippocampal neurons, Nature 357:244–246.

    Article  PubMed  CAS  Google Scholar 

  • Jarvis CR, Xiong ZG, Plant JR, Churchill D, Lu WY, Macvicar BA, Macdonald JF (1997) Neurotrophin modulation of NMDA receptors in cultured murine and isolated rat neurons, J. Neurophysiol. 78:2363–2371.

    PubMed  CAS  Google Scholar 

  • Jovanovic JN, Czernik AJ, Fienberg AA, Greengard P, Sihra TS (2000) Synapsins as mediators of BDNF-enhanced neurotransmitter release, Nat. Neurosci. 3:323–329.

    Article  PubMed  CAS  Google Scholar 

  • Jovanovic JN, Thomas P, Kittler JT, Smart TG, Moss SJ, (2004) Brain-derived neurotrophic factor modulates fast synaptic inhibition by regulating GABAA receptor phosphorylation, activity, and cell-surface stability, J. Neurosci. 24:522–530.

    Article  PubMed  CAS  Google Scholar 

  • Kandel ER (2001) The molecular biology of memory storage: a dialogue between genes and synapses, Science 294:1030–1038.

    Article  PubMed  CAS  Google Scholar 

  • Kang H, Schuman EM (2000) Intracellular Ca2+ signaling is required for neurotrophin-induced potentiation in the adult rat hippocampus, Neurosci. Lett. 282:141–144.

    Article  PubMed  CAS  Google Scholar 

  • Kapur A, Yeckel M, Johnston D (2001) Hippocampal mossy fiber activity evokes Ca2+ release in CA3 pyramidal neurons via a metabotropic glutamate receptor pathway, Neuroscience 107:59–69.

    Article  PubMed  CAS  Google Scholar 

  • Lesser SS, Sherwood NT, Lo DC (1997) Neurotrophins differentially regulate voltage-gated ion channels, Mol. Cell. Neurosci. 10:173–183.

    Article  PubMed  CAS  Google Scholar 

  • Lessman V, Gottmann K, Heumann R (1994) BDNF and NT-4/5 enhance glutamatergic synaptic transmission in cultured hippocampal neurons, Neuroreport 6:21–25.

    Article  Google Scholar 

  • Levine ES, Crozier RA, Black IB, Plummer MR (1998) Brain-derived neurotrophic factor modulates hippocampal synaptic transmission by increasing N-methyl-D-aspartic acid receptor activity, Proc. Natl. Acad. Sci. USA 95:10235–10239.

    Article  PubMed  CAS  Google Scholar 

  • Levine ES, Dreyfus CF, Black IB, Plummer MR (1995a) Brain-derived neurotrophic factor rapidly enhances synaptic transmission in hippocampal neurons via postsynaptic tyrosine kinase receptors, Proc. Natl. Acad. Sci. USA 92:8074–8077.

    Article  PubMed  CAS  Google Scholar 

  • Levine ES, Dreyfus CF, Black IB, Plummer MR (1995b) Differential effects of NGF and BDNF on voltagegated calcium currents in embryonic basal forebrain neurons, J. Neurosci. 15:3084–3091.

    PubMed  CAS  Google Scholar 

  • Lewin GR, Barde Y (1996) Physiology of the neurotrophins, Ann. Rev. Neurosci. 19:289–317.

    Article  PubMed  CAS  Google Scholar 

  • Li YX, Zhang Y, Lester HA, Schuman EM, Davidson N (1998) Enhancement of neurotransmitter release induced by brain-derived neurotrophic factor in cultured hippocampal neurons, J. Neurosci. 18:10231–10240.

    PubMed  CAS  Google Scholar 

  • Lin SY, Wu K, Levine ES, Mount HT, Suen PC, Black IB (1998) BDNF acutely increases tyrosine phosphorylation of the NMDA receptor subunit 2B in cortical and hippocampal postsynaptic densities, Brain Res. Mol. Brain Res. 55:20–27.

    Article  PubMed  CAS  Google Scholar 

  • Lindvall O, Kokaia Z, Bengzon J, Elmer E, Kokaia M (1994) Neurotrophins and brain insults, Trends Neurosci. 17:490–496.

    Article  PubMed  CAS  Google Scholar 

  • Lo DC (1995) Neurotrophic factors and synaptic plasticity, Neuron 15:979–981.

    Article  PubMed  CAS  Google Scholar 

  • Lu B (2003) BDNF and activity-dependent synaptic modulation, Learn. Mem. 10:86–98.

    Article  PubMed  Google Scholar 

  • Magee JC, Christofi G, Miyakawa H, Christie B, Lasser-Ross N, Johnston D (1995) Subthreshold synaptic activation of voltage-gated Ca2+ channels mediates a localized Ca2+ influx into the dendrites of hippocampal pyramidal neurons, J. Neurophysiol. 74:1335–1342.

    PubMed  CAS  Google Scholar 

  • Magee JC, Johnston D (1997) A synaptically controlled, associative signal for Hebbian plasticity in hippocampal neurons, Science 275:209–213.

    Article  PubMed  CAS  Google Scholar 

  • Mainen ZF, Malinow R, Svoboda K (1999) Synaptic calcium transients in single spines indicate that NMDA receptors are not saturated, Nature 399:151–155.

    Article  PubMed  CAS  Google Scholar 

  • Malinow R, Otmakhov N, Blum KI, Lisman J (1994) Visualizing hippocampal synaptic function by optical detection of Ca2+ entry through the N-methyl-D-aspartate channel, Proc. Natl. Acad. Sci. USA 91:8170–8174.

    Article  PubMed  CAS  Google Scholar 

  • Marsh HN, Palfrey HC (1996) Neurotrophin-3 and brain-derived neurotrophic factor activate multiple signal transduction events but are not survival factors for hippocampal pyramidal neurons, J. Neurochem. 67:952–963.

    Article  PubMed  CAS  Google Scholar 

  • Marty S, Berzaghi Mda P, Berninger B (1997) Neurotrophins and activity-dependent plasticity of cortical interneurons, Trends Neurosci. 20:198–202.

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto T, Numakawa T, Adachi N, Yokomaku D, Yamagishi S, Takei N, Hatanaka H (2001) Brain-derived neurotrophic factor enhances depolarization-evoked glutamate release in cultured cortical neurons, J. Neurochem. 79:522–530.

    Article  PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL (1987) Permeation and block of N-methyl-D-aspartic acid receptor channels by divalent cations in mouse cultured central neurones, J. Physiol. 394:501–527.

    PubMed  CAS  Google Scholar 

  • Mayer ML, Westbrook GL, Guthrie PB (1984) Voltage-dependent block by Mg+ of NMDA responses in spinal cord neurones, Nature 309:261–263.

    Article  PubMed  CAS  Google Scholar 

  • McCutchen ME, Bramham CR, Pozzo-Miller LD (2002) Modulation of neuronal calcium signaling by neurotrophic factors, Int. J. Dev. Neurosci. 20:199–207.

    Article  PubMed  CAS  Google Scholar 

  • Mermelstein PG, Bito H, Deisseroth K, Tsien RW (2000) Critical dependence of cAMP response element binding protein phosphorylation on L-type calcium channels supports a selective response to EPSPs in preference to action potentials, J. Neurosci. 20:266–273.

    PubMed  CAS  Google Scholar 

  • Minichiello L, Calella AM, Medina DL, Bonhoeffer T, Klein R, Korte M (2002) Mechanism of TrkB-mediated hippocampal long-term potentiation, Neuron 36:121–137.

    Article  PubMed  CAS  Google Scholar 

  • Miyakawa H, Ross WN, Jaffe D, Callaway JC, Lasser-Ross N, Lisman JE, Johnston D (1992) Synaptically activated increases in Ca2+ concentration in hippocampal CAI pyramidal cells are primarily due to voltage-gated Ca2+ channels, Neuron 9:1163–1173.

    Article  PubMed  CAS  Google Scholar 

  • Mizoguchi Y, Monji A, Nabekura J (2002) Brain-derived neurotrophic factor induces long-lasting Ca2+-activated K+ currents in rat visual cortex neurons, Eur. J. Neurosci. 16:1417–1424.

    Article  PubMed  Google Scholar 

  • Mizoguchi Y, Nabekura J (2003) Sustained intracellular Ca2+ elevation induced by a brief BDNF application in rat visual cortex neurons, Neuroreport 14:1481–1483.

    Article  PubMed  Google Scholar 

  • Mizuno M, Yamada K, Takei N, Tran MH, He J, Nakajima A, Nawa H, Nabeshima T (2003) Phosphatidylinositol 3-kinase: a molecule mediating BDNF-dependent spatial memory formation, Mol. Psychiatry 8:217–224.

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Birnbaumer L, Flockerzi V (2002) The TRP channels, a remarkably functional family, Cell 108:595–598.

    Article  PubMed  CAS  Google Scholar 

  • Montell C, Jones K, Hafen E, Rubin G (1985) Rescue of the Drosophila phototransduction mutation trp by germline transformation, Science 230:1040–1043.

    PubMed  CAS  Google Scholar 

  • Murphy SN, Miller RJ (1988) A glutamate receptor regulates Ca2+ mobilization in hippocampal neurons, Proc.Natl.Acad.Sci. USA 85:8737–8741.

    Article  PubMed  CAS  Google Scholar 

  • Murthy VN, Sejnowski TJ, Stevens CF (1997) Heterogeneous release properties of visualized individual hippocampal synapses, Neuron 18:599–612.

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Barbara JG, Nakamura K, Ross WN (1999) Synergistic release of Ca2+ from IP3-sensitive stores evoked by synaptic activation of mGluRs paired with backpropagating action potentials, Neuron 24:727–737.

    Article  PubMed  CAS  Google Scholar 

  • Nimchinsky EA, Yasuda R, Oertner TG, Svoboda K (2004) The number of glutamate receptors opened by synaptic stimulation in single hippocampal spines, J. Neurosci. 24:2054–2064.

    Article  PubMed  CAS  Google Scholar 

  • Numakawa T, Matsumoto T, Adachi N, Yokomaku D, Kojima M, Takei N, Hatanaka H (2001) Brain-derived neurotrophic factor triggers a rapid glutamate nelease through increase of intracellular Ca2+ and Na2+ in cultured cerebellar neurons, J. Neurosci. Res. 66:96–108.

    Article  PubMed  CAS  Google Scholar 

  • Numakawa T, Yamagishi S, Adachi N, Matsumoto T, Yokomaku D, Yamada M, Hatanaka H (2002) Brain-derived neurotrophic factor-induced potentiation of Ca2+ oscillations in developing cortical neurons, J. Biol. Chem. 277:6520–6529.

    Article  PubMed  CAS  Google Scholar 

  • Pandiella-Alonso A, Malgaroli A, Vicentini LM, Meldolesi J (1986) Early rise of cytosolic Ca2+ induced by NGF in PCI2 and chromaffin cells, FEBS Lett. 208:48–51.

    Article  PubMed  CAS  Google Scholar 

  • Perkel DJ, Petrozzino JJ, Nicoll RA, Connor JA (1993) The role of Ca2+ entry via synaptically activated NMDA receptors in the induction of long-term potentiation, Neuron 11:817–823.

    Article  PubMed  CAS  Google Scholar 

  • Pizzorusso T, Ratto GM, Putignano E, Maffei L (2000) Brain-derived neurotrophic factor causes cAMP response element-binding protein phosphorylation in absence of calcium increases in slices and cultured neurons from rat visual cortex, J. Neurosci. 20:2809–2816.

    PubMed  CAS  Google Scholar 

  • Poo MM (2001), Neurotrophins as synaptic modulators, Nat. Rev. Neurosci. 2:24–32.

    Article  PubMed  CAS  Google Scholar 

  • Pozzo-Miller LD, Connor JA, Andrews SB (2000) Microheterogeneity of calcium signalling in dendrites, J. Physiol. 525:53–61.

    Article  PubMed  CAS  Google Scholar 

  • Pozzo-Miller LD, Gottschalk W, Zhang L, Mcdermott K, Du J, Gopalakrishnan R, Oho C, Sheng ZH, Lu B (1999a) Impairments in high-frequency transmission, synaptic vesicle docking, and synaptic protein distribution in the hippocampus of BDNF knockout mice, J. Neurosci. 19:4972–4983.

    PubMed  CAS  Google Scholar 

  • Pozzo-Miller LD, Inoue T, Murphy DD (1999b) Estradiol increases spine density and NMDA-dependent Ca2+ transients in spines of CA1 pyramidal neurons from hippocampal slices, J. Neurophysiol. 81:1404–1411.

    PubMed  CAS  Google Scholar 

  • Pozzo-Miller LD, Petrozzino JJ, Golarai G, Connor JA (1996) Ca2+ release from intracellular stores induced by afferent stimulation of CA3 pyramidal neurons in hippocampal slices, J. Neurophysiol. 76:554–562.

    Google Scholar 

  • Pozzo-Miller LD, Petrozzino JJ, Mahanty NK, Connor JA (1993) Optical imaging of cytosolic calcium, electrophysiology, and ultrastructure in pyramidal neurons of organotypic slice cultures from rat hippocampus, Neuroimage 1:109–120.

    Article  Google Scholar 

  • Rae MG, Irving AJ (2004) Both mGluR1 and mGluR5 mediate Ca2+ release and inward currents in hippocampal CA1 pyramidal neurons, Neuropharmacology 46:1057–1069.

    Article  PubMed  CAS  Google Scholar 

  • Rico B, Xu B, Reichardt LF (2002) TrkB receptor signaling is required for establishment of GABAergic synapses in the cerebellum, Nat. Neurosci. 5:225–233.

    Article  PubMed  CAS  Google Scholar 

  • Righi M, Tongiorgi E, Cattaneo A (2000) Brain-derived neurotrophic factor (BDNF) induces dendritic targeting of BDNF and tyrosine kinase B mRNAs in hippocampal neurons through a phosphatidylinositol-3 kinase-dependent pathway, J. Neurosci. 20:3165–3174.

    PubMed  CAS  Google Scholar 

  • Rose CR, Konnerth A (2001) Stores not just for storage, intracellular calcium release and synaptic plasticity, Neuron 31:519–522.

    Article  PubMed  CAS  Google Scholar 

  • Rosen LB, Ginty DD, Weber MJ, Greenberg ME (1994) Membrane depolarization and calcium influx stimulate MEK and MAP kinase via activation of Ras, Neuron 12:1207–1221.

    Article  PubMed  CAS  Google Scholar 

  • Sakai N, Yamada M, Numakawa T, Ogura A, Hatanaka H (1997) BDNF potentiates spontaneous Ca2+ oscillations in cultured hippocampal neurons, Brain Res. 778:318–328.

    Article  PubMed  CAS  Google Scholar 

  • Schikorski T, Stevens CF (1997) Quantitative ultrastructural analysis of hippocampal excitatory synapses, J. Neurosci. 17:5858–5867.

    PubMed  CAS  Google Scholar 

  • Schmidt-Kastner R, Wetmore C, Olson L (1996) Comparative study of brain-derived neurotrophic factor messenger RNA and protein at the cellular level suggests multiple roles in hippocampus, striatum and cortex, Neuroscience 74:161–183.

    Article  PubMed  CAS  Google Scholar 

  • Segal RA, Greenberg ME (1996) Intracellular signaling pathways activated by neurotrophic factors, Annu. Rev. Neurosci. 19:463–489.

    PubMed  CAS  Google Scholar 

  • Shirasaki T, Harata N, Akaike N (1994) Metabotropic glutamate response in acutely dissociated hippocampal CA1 pyramidal neurones of the rat, J. Physiol. 475:439–453.

    PubMed  CAS  Google Scholar 

  • Spruston N, Schiller Y, Stuart G, Sakmann B (1995) Activity-dependent action potential invasion and calcium influx into hippocampal CA1 dendrites, Science 268:297–300.

    PubMed  CAS  Google Scholar 

  • Stoop R, Poo MM (1996) Synaptic modulation by neurotrophic factors: differential and synergistic effects of brain-derived neurotrophic factor and ciliary neurotrophic factor, J. Neurosci. 16:3256–3264.

    PubMed  CAS  Google Scholar 

  • Suen PC, Wu K, Levine ES, Mount HT, Xu JL, Lin SY, Black IB (1997) Brain-derived neurotrophic factor rapidly enhances phosphorylation of the postsynaptic N-methyl-D-aspartate receptor subunit 1, Proc. Natl. Acad. Sci. USA 94:8191–8195.

    Article  PubMed  CAS  Google Scholar 

  • Svoboda K, Mainen ZF (1999) Synaptic [Ca2+]: intracellular stores spill their guts, Neuron 22:427–430.

    Article  PubMed  CAS  Google Scholar 

  • Tanaka T, Saito H, Matsuki N (1997) Inhibition of GABAA synaptic responses by brain-derived neurotrophic factor (BDNF) in rat hippocampus, J. Neurosci. 17:2959–2966.

    PubMed  CAS  Google Scholar 

  • Tartaglia N, Du J, Tyler WJ, Neale E, Pozzo-Miller L, Lu B (2001) Protein synthesis-dependent and — independent regulation of hippocampal synapses by brain-derived neurotrophic factor, J. Biol. Chem. 276:37585–37593.

    Article  PubMed  CAS  Google Scholar 

  • Thoenen H (1995) Neurotrophins and neuronal plasticity, Science 270:593–598.

    PubMed  CAS  Google Scholar 

  • Tsien RW, Tsien RY (1990) Calcium channels, stores, and oscillations, Annu. Rev. Cell Biol. 6:715–760.

    Article  PubMed  CAS  Google Scholar 

  • Tyler WJ, Alonso M, Bramham CR, Pozzo-Miller LD (2002a) From acquisition to consolidation: on the role of brain-derived neurotrophic factor signaling in hippocampal-dependent learning, Learn. Mem. 9:224–237.

    Article  PubMed  Google Scholar 

  • Tyler WJ, Perrett SP, Pozzo-Miller LD (2002b) The role of neurotrophins in neurotransmitter release, Neuroscientist 8:524–531.

    Article  PubMed  CAS  Google Scholar 

  • Tyler WJ, Pozzo-Miller LD (2001) BDNF enhances quantal neurotransmitter release and increases the number of docked vesicles at the active zones of hippocampal excitatory synapses, J. Neurosci. 21:4249–4258.

    PubMed  CAS  Google Scholar 

  • Valenti O, Conn PJ, Marino MJ (2002) Distinct physiological roles of the Gq-coupled metabotropic glutamate receptors Co-expressed in the same neuronal populations, J. Cell Physiol. 191:125–137.

    Article  PubMed  CAS  Google Scholar 

  • Vetter ML, Martin-Zanca D, Parada LF, Bishop JM, Kaplan DR (1991) Nerve growth factor rapidly stimulates tyrosine phosphorylation of phospholipase C-γ 1 by a kinase activity associated with the product of the trk protooncogene, Proc. Natl. Acad. Sci. USA 88:5650–5654.

    Article  PubMed  CAS  Google Scholar 

  • Westenbroek RE, Ahlijanian MK, Catterall WA (1990) Clustering of L-type Ca2+ channels at the base of major dendrites in hippocampal pyramidal neurons, Nature 347:281–284.

    Article  PubMed  CAS  Google Scholar 

  • Widmer HR, Kaplan DR, Rabin SJ, Beck KD, Hefti F, Knusel B (1993) Rapid phosphorylation of phospholipase C gamma 1 by brain-derived neurotrophic factor and neurotrophin-3 in cultures of embryonic rat cortical neurons, J. Neurochem. 60:2111–2123.

    PubMed  CAS  Google Scholar 

  • Widmer HR, Knusel B, Hefti F (1992) Stimulation of phosphatidylinositol hydrolysis by brain-derived neurotrophic factor and neurotrophin-3 in rat cerebral cortical neurons developing in culture, J. Neurochem. 59:2113–2124.

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Radeke MJ, Matheson CR, Talvenheimo J, Welcher AA, Feinstein SC (1997a) Immunocytochemical localization of TrkB in the central nervous system of the adult rat, J. Comp. Neurol. 378:135–157.

    Article  PubMed  CAS  Google Scholar 

  • Yan Q, Rosenfeld RD, Matheson CR, Hawkins N, Lopez OT, Bennett L, Welcher AA (1997b) Expression of brain-derived neurotrophic factor protein in the adult rat central nervous system, Neuroscience 78:431–448.

    Article  PubMed  CAS  Google Scholar 

  • Yeckel MF, Kapur A, Johnston D (1999) Multiple forms of LTP in hippocampal CA3 neurons use a common postsynaptic mechanism, Nat. Neurosci. 2:625–633.

    Article  PubMed  CAS  Google Scholar 

  • Yoo AS, Cheng I, Chung S, Grenfell TZ, Lee H, Pack-Chung E, Handler M, Shen J, Xia W, Tesco G, Saunders AJ, Ding K, Frosch MP, Tanzi RE, Kim TW (2000) Presenilin-mediated modulation of capacitative calcium entry, Neuron 27:561–572.

    Article  PubMed  CAS  Google Scholar 

  • Yuste R, Majewska A, Cash SS, Denk W (1999) Mechanisms of calcium influx into hippocampal spines: heterogeneity among spines, coincidence detection by NMDA receptors, and optical quantal analysis, J. Neurosci. 19:1976–1987.

    PubMed  CAS  Google Scholar 

  • Zirrgiebel U, Ohga Y, Carter B, Berninger B, Inagaki N, Thoenen H, Lindholm D (1995) Characterization of TrkB receptor-mediated signaling pathways in rat cerebellar granule neurons: involvement of protein kinase C in neuronal survival, J. Neurochem. 65:2241–2250.

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1996) Exocytosis: a molecular and physiological perspective, Neuron 17:1049–1055.

    Article  PubMed  CAS  Google Scholar 

  • Zucker RS (1999) Calcium-and activity-dependent synaptic plasticity, Curr. Opin. Neurobiol. 9:305–313.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Amaral, M.D., Pozzo-Miller, L. (2005). On the Role of Neurotrophins in Dendritic Calcium Signaling. In: Stanton, P.K., Bramham, C., Scharfman, H.E. (eds) Synaptic Plasticity and Transsynaptic Signaling. Springer, Boston, MA. https://doi.org/10.1007/0-387-25443-9_12

Download citation

Publish with us

Policies and ethics