Skip to main content

Microporous Honeycomb-Structured Polymer Films

  • Chapter
  • 1237 Accesses

Part of the book series: Nanostructure Science and Technology ((NST))

5.6. Conclusion

An experimental preparation technique was described that is capable to produce mesoscopic polymer network structures with different shapes of the basic cell: A drop of the initial polymer solution spreads onto a cooled water surface, and the water vapour interacts with the resulting polymer thin film. Following the self-organization process of precipitating droplets of the water vapour on the polymer layer, pulling the latter to the water droplets, and subsequently evaporating the solvent, the originally homogeneous polymer film proceeds to a hexagonal network pattern. It was demonstrated that the size of the basic hexagonal cell is determined by the diameter of the water vapour droplets used during preparation. It was suggested that the stabilization of water droplets on the fluid surface is indispensable for ordered structure formation. This is performed by the ability of the polymer to precipitate at the solution-water interface. The properties of different polymer solutions are discussed that can influence a growth rate, a size and a form of condensing water droplets, and their interaction between each other. By the help of an elementary model study on the self-organized structuring process in the liquid polymer films, it was succeeded in specifying and interpreting the morphology of the basic network cells observed experimentally.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. R.R. Bhave, Inorganic Membranes: Synthesis, Characteristics and Applications, Van Nostrand Reinhold, New York, 1991.

    Google Scholar 

  2. E. Yablonovitch, Inhibited spontaneous emission in solid-state physics and electronics, Phys. Rev. Lett. 58(20), 2059–2062 (1987).

    Article  CAS  Google Scholar 

  3. N. Akoezbek and S. John, Optical solitary waves in two-and three-dimensional nonlinear photonic band-gap structures, Phys. Rev. E. 57(2), 2287–2319 (1998).

    Article  Google Scholar 

  4. K. Busch and S. John, Photonic band gap formation in certain self-organizing systems, Phys. Rev. E 58(3), 3896–3908 (1998).

    Article  CAS  Google Scholar 

  5. T. Bitzer, Honeycomb Technology, Chapman and Hall, London, 1997.

    Google Scholar 

  6. S.A. Jenekhe and X.L. Chen, Self-assembly of ordered microporous material from rod-coil block copolymers, Science 283, 372–375 (1999).

    Article  CAS  Google Scholar 

  7. Y. Xia, B. Gates, Y. Yin and Y. Lu, Monodispersed colloidal spheres: old materials with new applications, Adv. Mater. 12(10), 693–713 (2000).

    Article  CAS  Google Scholar 

  8. D.J. Norris and Yu, A. Vlasov, Chemical approaches to three-dimensional semiconductor photonic crystals, Adv. Mater. 13(6), 371–376 (2000).

    Article  Google Scholar 

  9. A. Steyer, P. Guenoun and D. Beysens, Hexatic and fat-fractal structures for water droplets condensing on oil, Phys. Rev. E. 48(1), 428–431 (1993).

    Article  CAS  Google Scholar 

  10. G. Widawski, M. Rawiso and B. Francois, Self-organized honeycomb morphology of star-polymer polystyrene films, Nature 369, 387–389 (1994).

    Article  CAS  Google Scholar 

  11. B. Francois, O. Pitois and J. Francois, Polymer films with a self-organized honeycomb morphology, Adv. Mater. 7(12), 1041–1044 (1995).

    Article  CAS  Google Scholar 

  12. O. Pitois and B. Francois, Formation of ordered micro-porous membranes, Eur. Phys. J. B 8, 225–231 (1999).

    Article  CAS  Google Scholar 

  13. O. Karthaus, N. Maruyama, X. Cieren, M. Shimomura, H. Hasegawa and T. Hashimoto, Water-assisted formation of micrometer-size honeycomb patterns of polymers, Langmuir 16(15), 6071–6076 (2000).

    Article  CAS  Google Scholar 

  14. M. Srinivasarao, D. Collings, A. Philips and S. Patel, Three-dimensionally ordered array of air bubbles in a polymer film, Science 292, 79–83 (2001).

    Article  CAS  Google Scholar 

  15. L.V. Govor, I.B. Butylina, I.A. Bashmakov, I.M. Grigorieva, V.K. Ksenevich and V.A. Samuilov, in Advanced Semiconductor Devices and Microsystems, Ed. T. Labinsky, Smolenice, Slovakia, 1996, pp. 81–83.

    Google Scholar 

  16. L.V. Govor, I.A. Bashmakov, F.N. Kaputski, M. Pientka and J. Parisi, Self-organized formation of low-dimensional network structures starting from a nitrocellulose solution, Macromol. Chem. Phys. 201(18), 2721–2728 (2000).

    Article  CAS  Google Scholar 

  17. L.V. Govor, I.A. Bashmakov, R. Kiebooms, V. Dyakonov and J. Parisi, Self-organized networks based on conjugated polymers, Adv. Mater. 13(8), 588–591 (2001).

    Article  CAS  Google Scholar 

  18. A.W. Adamson, Physical Chemistry of Surfaces, Wiley, New York, 1982.

    Google Scholar 

  19. D.Y.C. Chan, J.D. Henry and L.R. White, The interaction of colloidal particles collected at fluid interface, J. Colloid Interface Sci. 79(2), 410–418 (1981).

    Article  CAS  Google Scholar 

  20. C.M. Knobler and D. Beysens, Growth of breath figures on fluid surfaces, Europhys. Lett. 6(8), 707–712 (1988).

    Google Scholar 

  21. H.M. Princen, in Surface and Colloid Science, Ed. E. Matijevic, Vol. 2, Wiley-Interscience, New York, 1969, pp. 1–84.

    Google Scholar 

  22. D. Beysens and C.M. Knobler, Growth of breath figures, Phys. Rev. Lett. 57(12), 1433–1436 (1986).

    Article  Google Scholar 

  23. F. Family and P. Meakin, Scaling of the droplet-size distribution in vapor-deposited thin films, Phys. Rev. Lett. 61(4), 428–431 (1988).

    Article  CAS  Google Scholar 

  24. B.J. Briscoe and K.P. Galvin, The evolution of a 2D constrained growth system of droplets-breath figures, J. Phys. D: Appl. Phys. 23(4), 422–428 (1990).

    Article  CAS  Google Scholar 

  25. A.V. Limaye, R.D. Narhe, A.M. Dhote and S.B. Ogale, Evidence for convective effects in breath figure formation on volatile fluid surfaces, Phys. Rev. Lett. 79(20), 3762–3765 (1996).

    Article  Google Scholar 

  26. A. Steyer, P. Guenoun and D. Beysens, Two-dimensional ordering during droplet growth on a liquid surface, Phys. Rev. B 42(1), 1086–1089 (1990).

    Article  Google Scholar 

  27. L.V. Govor, M. Goldbach, I.A. Bashmakov, I.B. Butylina and J. Parisi, Electrical properties of self-assembled carbon networks, Phys. Rev. B 62(3), 2201–2208 (2000).

    Article  CAS  Google Scholar 

  28. L.V. Govor, I.A. Bashmakov, K. Boehme, M. Pientka and J. Parisi, Coulomb gap and variable-range hopping in self-organized carbon networks, J. Appl. Phys. 90(3), 1307–1313 (2001).

    Article  CAS  Google Scholar 

  29. L.V. Govor, I.A. Bashmakov, K. Boehme and J. Parisi, Electrical field dependence of hopping conduction in self-organized carbon networks, J. Appl. Phys. 91(2), 739–747 (2002).

    Article  CAS  Google Scholar 

  30. L.V. Govor, M. Goldbach, I.A. Bashmakov and J. Parisi, Preparation and electrical characterization of low-dimensional net structures made out of GaAs epitaxial layers, Phys. Lett. A 261, 197–204 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Govor, L.V. (2005). Microporous Honeycomb-Structured Polymer Films. In: Ordered Porous Nanostructures and Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25193-6_5

Download citation

Publish with us

Policies and ethics