Skip to main content

Highly Ordered Nanohole Arrays in Anodic Porous Alumina

  • Chapter

Part of the book series: Nanostructure Science and Technology ((NST))

3.8. Conclusion

Anodic porous alumina with highly ordered structures could be formed based on two types of ordering processes: naturally occurring ordering under the appropriate anodizing conditions and anodization using pretextured Al. The fabrication based on the naturally occurring long-range ordering is simple and useful for the ordered hole array configuration with large area. Anodic porous alumina with an ideally ordered hole array obtained by the pretexturing process is useful for applications in which a strictly ordered single-domain hole configuration is required, such as optical devices or patterned recording media. Both types of ordered anodic porous alumina are promising as starting structures for the fabrication of a wide variety of functional devices with nanometre dimensions.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. F. Keller, M. Hunter and D.L. Robinson, J. Electrochem. Soc. 100, 411 (1953).

    CAS  Google Scholar 

  2. J.P. O’Sullivan and G.C. Wood, Proc. R. Soc. Lond., Ser. A 317, 511 (1970).

    Article  CAS  Google Scholar 

  3. K. Ebihara, H. Takahashi and M. Nagayama, J. Surf. Fin. Soc. Jpn. 34, 548 (1983).

    CAS  Google Scholar 

  4. H. Masuda and K. Fukuda, Science 268, 1466 (1995).

    CAS  Google Scholar 

  5. H. Masuda, F. Hasegawa and S. Ono, J. Electrochem. Soc. 144, L127 (1997).

    CAS  Google Scholar 

  6. H. Masuda and M. Satoh, Jpn. J. Appl. Phys. 35, L126 (1996).

    Article  CAS  Google Scholar 

  7. H. Masuda, K. Yada and A. Osaka, Jpn. J. Appl. Phys. 37, L1340 (1998).

    Article  Google Scholar 

  8. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, Jpn. J. Appl. Phys. 36, 7791 (1997).

    Article  CAS  Google Scholar 

  9. S. Shingubara, O. Okino, Y. Sayama, H. Sakaue and T. Takahagi, Solid-State Electron. 43, 1143 (1999).

    Article  CAS  Google Scholar 

  10. O. Jessensky, F. Muller and U. Gosele, Appl. Phys. Lett. 72, 1173 (1998).

    Article  CAS  Google Scholar 

  11. A.P. Li, F. Muller, A. Birner, K. Nielsch and U. Gosele, J. Appl. Phys. 84, 6023 (1998).

    Article  CAS  Google Scholar 

  12. F. Li, L. Zhang and R.M. Metzger, Chem. Mater. 10, 2470 (1998).

    Article  CAS  Google Scholar 

  13. L. Zhang, H.S. Cho, F. Li, R.M. Metzger and W.D. Doyle, J. Mater. Sci. Lett. 17, 291 (1998).

    Article  CAS  Google Scholar 

  14. H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao and T. Tamamura, Appl. Phys. Lett. 71, 2770 (1997).

    Article  CAS  Google Scholar 

  15. H. Asoh, K. Nishio, M. Nakao, A. Yokoo, T. Tamamura and H. Masuda, J. Vac. Sci. Tech. B 19, 569 (2001).

    Article  CAS  Google Scholar 

  16. H. Asoh, K. Nishio, M. Nakao, T. Tamamura and H. Masuda, J. Electochem. Soc. 148, B152 (2001).

    Article  CAS  Google Scholar 

  17. C.Y. Liu, A. Datta and Y.L. Wang, Appl. Phys. Lett. 78, 120 (2001).

    Article  CAS  Google Scholar 

  18. H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo and T. Tamamura, Appl. Phys. Lett. 78, 826 (2001).

    Article  CAS  Google Scholar 

  19. H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao and T. Tamamura, Adv. Mater. 13, 189 (2001).

    Article  CAS  Google Scholar 

  20. J.D. Jannopoulos, R.D. Meade and J.N. Winn, Photonic Crystals, Princeton University Press, Princeton, 1995.

    Google Scholar 

  21. H. Masuda, M. Ohya, H. Asoh, M. Nakao, M. Nohtomi and T. Tamamura, Jpn. J. Appl. Phys. 38, L1403 (1999).

    Article  Google Scholar 

  22. H. Masuda, M. Ohya, K. Nishio, H. Asoh, M. Nakao, M. Nohtomi, A. Yokoo and T. Tamamura, Jpn. J. Appl. Phys. 39, L1039 (2000).

    Article  CAS  Google Scholar 

  23. H. Masuda, M. Ohya, H. Asoh and K. Nishio, Jpn. J. Appl. Phys. 40, L1217 (2001).

    Article  CAS  Google Scholar 

  24. C.R. Martin, Science 266, 1961 (1994).

    CAS  Google Scholar 

  25. J.C. Hulteen and C.R. Martin, J. Mater. Chem. 7, 1075 (1997).

    Article  CAS  Google Scholar 

  26. G. Che, B.B. Lakshmi, E.R. Fisher and C.R. Martin, Nature 393, 346 (1998).

    Article  CAS  Google Scholar 

  27. C.K. Preston and M. Moskovits, J. Phys. Chem. 92, 2957 (1988).

    Article  CAS  Google Scholar 

  28. C.K. Preston and M. Moskovits, J. Phys. Chem. 97, 8495 (1993).

    Article  CAS  Google Scholar 

  29. D. Routkevitch, T. Bigioni, M. Moskovits and J.M. Xu, J. Phys. Chem. 100, 14037 (1996).

    Article  CAS  Google Scholar 

  30. S. Kawai and R. Ueda, J. Electrochem. Soc. 122, 32 (1975).

    CAS  Google Scholar 

  31. C.G. Granqvist, A. Anderson and O. Hunderi, Appl. Phys. Lett. 35, 268 (1979).

    Article  CAS  Google Scholar 

  32. C.A. Huber, T.E. Huber, M. Sadoqi, J.A. Lubin, S. Manalis and C.B. Prater, Science 263, 800 (1994).

    CAS  Google Scholar 

  33. T. Kyotani, L.-F. Tasi and A. Tomita, Chem. Mater. 8, 2109 (1996).

    Article  CAS  Google Scholar 

  34. J. Zhang, L.D. Zhang, X.F. Wang, C.H. Liang, X.S. Peng and Y.W. Wang, J. Chem. Phys. 115, 5714 (2001).

    Article  CAS  Google Scholar 

  35. T. Iwasaki, T. Motoi and T. Den, Appl. Phys. Lett. 75, 2044 (1999).

    Article  CAS  Google Scholar 

  36. J.S. Suh and J.S. Lee, Appl. Phys. Lett. 75, 2047 (1999).

    Article  CAS  Google Scholar 

  37. S.-H. Jeong, H.-Y. Hwang, K.-H. Lee and Y. Jeong, Appl. Phys. Lett. 78, 2052 (2001).

    Article  CAS  Google Scholar 

  38. F. Li, R. Metzger and W.D. Doyle, IEEE Trans. Mag. 33, 3715 (1997).

    Article  CAS  Google Scholar 

  39. S.G. Yang, H. Zhu, G. Ni, D.L. Yu, S.L. Tang and Y.W. Du, J. Phys. D 33, 2388 (2000).

    Article  CAS  Google Scholar 

  40. M. Zheng, L. Menon, H. Zeng, Y. Liu, S. Bandyopadhyyay, R.D. Kirby and D. J. Sellmyer, Phys. Rev. B 62, 12282 (2000).

    Article  CAS  Google Scholar 

  41. K. Nielsch, R.B. Wehrspohn, J. Barthel, J. Kirschner, U. Gosele, S.F. Fischer and H. Kronmuller, Appl. Phys. Lett. 79, 1360 (2001).

    Article  CAS  Google Scholar 

  42. H. Masuda, T. Yanagishita, K. Yasui, K. Nishio, I. Yagi, T. Rao and A. Fujishima, Adv. Mater. 13, 247 (2001).

    Article  CAS  Google Scholar 

  43. T.J. Cheng, J. Jorne and J.-S. Gau, J. Electrochem. Soc. 137, 93 (1990).

    CAS  Google Scholar 

  44. H. Daimon, O. Kitakami, O. Inagoya, A. Sakemoto and K. Mizushima, Jpn. J. Appl. Phys. 29, 1675 (1990).

    Article  CAS  Google Scholar 

  45. H. Masuda H. Tanaka and N. Baba, Chem. Lett. 621 (1990).

    Google Scholar 

  46. H. Masuda, H. Tanaka and N. Baba, Bull. Chem. Soc. Jpn. 66, 305 (1993).

    CAS  Google Scholar 

  47. H. Masuda, K. Nishio and N. Baba, Thin Solid Films 223, 1 (1993).

    Article  Google Scholar 

  48. H. Masuda, T. Mizuno, N. Baba and T. Ohmori, J. Electroanal. Chem. 368, 333. (1994).

    Article  CAS  Google Scholar 

  49. H. Masuda and K. Fukuda, J. Electroanal. Chem. 473, 240 (1999).

    Article  CAS  Google Scholar 

  50. T. Ohmori, T. Kimura and H. Masuda, J. Electrochem. Soc. 144, 1286 (1997).

    CAS  Google Scholar 

  51. H. Masuda, K. Nishio and N. Baba, Jpn. J. Appl. Phys. 31, L1775 (1992).

    Article  CAS  Google Scholar 

  52. P. Hoyer, N. Baba and H. Masuda, Appl. Phys. Lett. 66, 2700 (1995).

    Article  CAS  Google Scholar 

  53. P. Hoyer and H. Masuda, J. Mater. Sci. Lett. 15, 1228 (1996).

    Article  CAS  Google Scholar 

  54. Y. Lei, C.H. Liang, Y.C. Wu, L.D. Zhang and Y.Q. Mao, J. Vac. Sci. Tech. B 19, 1109 (2001).

    Article  CAS  Google Scholar 

  55. K. Jiang, Y. Wang, J. Dong, L. Gui and Y. Tang, Langmuir 17, 3635 (2001).

    Article  CAS  Google Scholar 

  56. H. Masuda, K. Yasui and K. Nisho, Adv. Mater. 12, 1031 (2000).

    Article  CAS  Google Scholar 

  57. M. Nakao, S. Oku, T. Tamamura, K. Yasui and H. Masuda, Jpn. J. Appl. Phys. 38, 1052 (1999).

    Article  CAS  Google Scholar 

  58. H. Masuda, K. Yasui, Y. Sakamoto, M. Nakao, T. Tamamura and K. Nishio, Jpn. J. Appl. Phys. 40, L1267 (2001).

    Article  CAS  Google Scholar 

  59. Y. Kanamori, K. Hane, H. Sai and H. Yugami, Appl. Phys. Lett. 78, 142 (2001).

    Article  CAS  Google Scholar 

  60. D. Crouse, Y.-H. Lo, A.E. Miller and M. Crouse, Appl. Phys. Lett. 76, 49 (2000).

    Article  CAS  Google Scholar 

  61. J.H. Wu, X.L. Wu, N. Tang, Y.F. Mei, X.M. Bao, Appl. Phys. A 72, 735 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Masuda, H. (2005). Highly Ordered Nanohole Arrays in Anodic Porous Alumina. In: Ordered Porous Nanostructures and Applications. Nanostructure Science and Technology. Springer, Boston, MA. https://doi.org/10.1007/0-387-25193-6_3

Download citation

Publish with us

Policies and ethics