Skip to main content

Differential-Absorption Lidar for Water Vapor and Temperature Profiling

  • Chapter
Lidar

Part of the book series: Springer Series in Optical Sciences ((SSOS,volume 102))

8.6 Conclusions

The application of differential absorption lidar to narrow lines of the rotational-vibrational spectrum of water vapor or oxygen for humidity and temperature profiling is technically demanding with respect to the laser source and the data acquisition. Many details need to be considered carefully in system design and data evaluation. If that is done properly the technique is very powerful, in particular for water-vapor profiling. The main strengths of DIAL in ground-based applications are its excellent daytime performance for high-resolution studies in the boundary layer and high-accuracy routine observations in the lower half of the troposphere, as well as its independence from external calibrations. Suitability for airborne and probably also for spaceborne applications is definitely another very important feature of the method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 219.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 279.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 279.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. K.J. Ritter, T.D. Wilkerson: J. Mol. Spectrosc. 121, 1 (1987)

    Article  ADS  Google Scholar 

  2. F.A. Theopold, J. Bösenberg: J. Atm. Oceanic Technology 10, 165 (1993)

    Article  ADS  Google Scholar 

  3. B. Grossmann, E.V. Browell: J. Mol. Spectrosc. 136, 264 (1989)

    Article  ADS  Google Scholar 

  4. B. Grossmann, E.V. Browell: J. Mol. Spectrosc. 138, 562 (1989)

    Article  ADS  Google Scholar 

  5. P.L. Ponsardin, E.V. Browell: J. Mol. Spectrosc. 185, 58 (1997)

    Article  ADS  Google Scholar 

  6. The hitran database. http://www.hitran.com

    Google Scholar 

  7. European space agency. http://badc.nerc.ac.uk/data/esa-wv

    Google Scholar 

  8. J. Bösenberg: Appl. Opt. 37, 3845 (1998)

    Article  ADS  Google Scholar 

  9. R.T.H. Collis, P.B. Russell: In Laser Monitoring of the Atmosphere, E.D. Hinkley, ed., volume 14 of Topics in applied physics (Springer Verlag, Berlin 1976)

    Google Scholar 

  10. G. Mégie: Appl. Opt. 19, 34 (1980)

    Article  ADS  Google Scholar 

  11. V. Wulfmeyer: Appl. Opt. 37, 3804 (1998)

    Article  ADS  Google Scholar 

  12. R.D. Schotland: In Proceedings of 4th Symposium on Remote Sensing of the Environment, p. 273, University of Michigan, 1966. Ann Arbor, Mich., Environmental Research Inst. of Michigan

    Google Scholar 

  13. W.B. Grant: Opt. Eng. 30, 40 (1991)

    Article  ADS  Google Scholar 

  14. T.H. Chyba, P. Ponsardin, N.S. Higdon, et al.: In Optical Remote Sensing of the Atmosphere, volume 2, Paper MD4 of OSA Technical Digest Series, p. 47. Optical Society of America, Washington DC, 1995

    Google Scholar 

  15. V. Wulfmeyer, J. Bösenberg, S. Lehmann, et al.: Opt. Lett. 20, 638 (1995)

    Article  ADS  Google Scholar 

  16. G. Ehret, A. Fix, V. Weiss, et al.: Appl. Phys. B 67, 427 (1998)

    Article  ADS  Google Scholar 

  17. United States Committee on Extension to the Standard Atmosphere. U. S. Standard Atmosphere, 1976 (National Oceanic and Atmospheric Administration, Washington, DC 1976)

    Google Scholar 

  18. J. Bösenberg, M. Alpers, D. Althausen, et al.: MPI Report No. 348, MPI für Meteorologie, 2003

    Google Scholar 

  19. H. Linné, D.D. Turner, J.E.M. Goldsmith, et al.: In Advances in Laser Remote Sensing. Selected Papers presented at the 20th International Laser Radar Conference (ILRC), Vichy, France, 10–14 July 2000. A. Dabas, C. Loth, J. Pelon, eds. (École Polytechnique, Palaiseau, France 2001), p. 293

    Google Scholar 

  20. J.E.M. Goldsmith, F.H. Blair, S.E. Bisson, et al.: Appl. Opt. 37, 4979 (1998)

    Article  ADS  Google Scholar 

  21. E.V. Browell, S. Ismail, W.M. Hall, et al.: In Advances in Atmospheric Remote Sensing with Lidar. Selected Papers of the 18th International Laser Radar Conference (ILRC), Berlin, 22–26 July 1996. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin 1997), p. 289

    Google Scholar 

  22. H.E. Revercomb, D.D. Turner, D.C. Tobin, et al.: Bull. Amer. Meteor. Soc. 84, 217 (2003)

    Article  ADS  Google Scholar 

  23. J. Bösenberg, H. Linné: Meteorol. Z. 11, 233 (2002)

    Article  Google Scholar 

  24. C. Senff, J. Bösenberg, G. Peters: J. Atm. Oceanic Technology 11, 85 (1994)

    Article  ADS  Google Scholar 

  25. C. Senff, J. Bösenberg, G. Peters, et al.: Contr. Atm. Physics 69(1), 161 (1996)

    Google Scholar 

  26. A. Giez, G. Ehret, R. Schwiesow, et al.: J. Atmos. Ocean. Tech. 16, 237 (1999)

    Article  Google Scholar 

  27. S. Lehmann, H. Linné, J. Bösenberg: In Advances in Laser Remote Sensing. Selected Papers presented at the 20th International Laser Radar Conference (ILRC), Vichy, France, 10–14 July 2000. A. Dabas, C. Loth, J. Pelon, eds. (École Polytechnique, Palaiseau, France 2001), p. 303

    Google Scholar 

  28. S. Lehmann: PhD thesis, Universität Hamburg, 2001

    Google Scholar 

  29. A.S. Moore, K.E. Brown, W.M. Hall, et al.: In Advances in Atmospheric Remote Sensing with Lidar. Selected Papers of the 18th International Laser Radar Conference (ILRC), Berlin, 22–26 July 1996. A. Ansmann, R. Neuber, P. Rairoux, U. Wandinger, eds. (Springer, Berlin 1997), p. 281

    Google Scholar 

  30. G. Poberaj, A. Assion, A. Fix, et al: In Advances in Laser Remote Sensing. Selected Papers presented at the 20th, International Laser Radar Conference (ILRC), Vichy, France, 10–14 July 2000. A. Dabas, C. Loth, J. Pelon, eds. (École Polytechnique, Palaiseau, France 2001), p. 325

    Google Scholar 

  31. D. Bruneau, P. Quaglia, C. Flamant, et al.: Appl. Opt. 40, 3450 (2001)

    Article  ADS  Google Scholar 

  32. S. Ismail, E.V. Browell, R.A. Ferrare, et al: In Lidar Remote Sensing in Atmosphere and Earth Sciences. Reviewed and revised papers presented at the twenty-first International Laser Radar Conference (ILRC21), Québec, Canada, 8–12 July 2002. L.R. Bissonnette, G. Roy, G. Vallée, eds. (Defence R&D Canada Valcartier, Val-Bélair, QC, Canada), Part 2, p. 523

    Google Scholar 

  33. J.B. Mason: Appl. Opt. 14, 76 (1975)

    ADS  Google Scholar 

  34. G.K. Schwemmer, T.D. Wilkerson: Appl. Opt. 18, 3539 (1979)

    Article  ADS  Google Scholar 

  35. C.L. Korb, C.Y. Weng: In 9 ILRC 9th International Laser Radar Conference, Munich, July 2–5, 1979. Conference Abstracts, C. Werner, F. Köpp, eds. (DFVLR Oberpfaffenhofen, 1979), p. 185

    Google Scholar 

  36. C.L. Korb, C.Y. Weng: J. Appl. Meteorol. 21, 1346 (1982)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media Inc.

About this chapter

Cite this chapter

Bösenberg, J. (2005). Differential-Absorption Lidar for Water Vapor and Temperature Profiling. In: Weitkamp, C. (eds) Lidar. Springer Series in Optical Sciences, vol 102. Springer, New York, NY. https://doi.org/10.1007/0-387-25101-4_8

Download citation

Publish with us

Policies and ethics