Skip to main content

Canonical Quantization

  • Chapter
Book cover Quantum Field Theory

Part of the book series: Graduate Texts in Contemporary Physics ((GTCP))

  • 4157 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. The canonical formalism when the Lagrangian has time-derivatives which are higher than second order, alluded to in text, is due to M. Ostrogradskii, Mem. Act. St.Petersburg, VI4, 385 (1850).

    Google Scholar 

  2. The result that the surface term at the final time-slice in the variation of the action gives the canonical one-form is, in essence, an old result going back to nineteenth century work on analytical mechanics. In the context of quantum field theory, it is also the basis of Schwinger’s quantum action principle. For some modern references, see V. Guillemin and S. Sternberg, Symplectic Techniques in Physics, Cambridge University Press (1990); J. Schwinger, Phys. Rev. 82, 914 (1951); C. Črnkovic and E. Witten, in Three Hundred Years of Gravitation, S.W. Hawking and W. Israel (eds.), Cambridge University Press (1987); G.J. Zuckerman, in Mathematical Aspects of String Theory, S.T. Yau (ed.), World Scientific (1987).

    Google Scholar 

  3. Casimir effect and Hawking radiation were briefly mentioned in text. Casimir effect is covered in detail in K.A. Milton, The Casimir Effect, World Scientific Pub. Co. (2001).

    Google Scholar 

  4. Hawking radiation and many related effects are discussed in V.P. Frolov and I.D. Novikov, Black Hole Physics: Basic Concepts and New Developments, Kluwer Academic Publishers (1998).

    Google Scholar 

  5. The original spin-statistics theorem is due to Pauli, with later more general approaches due to many others. In the context of relativistic quantum field theory, a good general reference is R.F. Streater and A.S. Wightman, PCT, Spin and Statistics and All That, W.A. Benjamin, Inc. (1964).

    Google Scholar 

  6. For the topological approach to spin-statistics for point particles, see R.P. Feynman, “The Reason for Antiparticles” in Elementary Particles and the Laws of Physics, Oxford University Press (1987); R.D. Tscheuschner, Int. J. Theor. Phys. 28, 1269 (1989); A.P. Balachandran et al, Mod. Phys. Lett. A5, 1574 (1990). This is related to earlier work on spin-statistics for solitons by a number of people, some of which can be traced from the last reference quoted.

    Google Scholar 

  7. A nice discussion of the spin-statistics theorem in the framework of path integrals is K. Fujikawa, Int. J. Mod. Phys. A16, 4025 (2001).

    ADS  MathSciNet  Google Scholar 

  8. For the canonical procedure on symmetrization of energy-momentum tensor, see F. Belinfante, Physica 6, 887 (1939); ibid. 7, 305 (1940). The symmetric energy-momentum tensor via variation of the metric is discussed in many books on relativity, for example, S. Weinberg, Gravitation and Cosmology, Wiley Text Books (1972); L. Landau and E.M. Lifshitz, Classical Theory of Fields, Butterworth-Heinemann, 4th edition (1980).

    Article  MATH  MathSciNet  ADS  Google Scholar 

  9. The classical conformal invariance of Maxwell equations goes back to E. Cunningham, Proc. Lond. Math. Soc. 8, 77 (1910); H. Bateman, Proc. Lond. Math. Soc. 8, 223 (1910).

    Article  Google Scholar 

Download references

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

(2005). Canonical Quantization. In: Quantum Field Theory. Graduate Texts in Contemporary Physics. Springer, New York, NY. https://doi.org/10.1007/0-387-25098-0_3

Download citation

Publish with us

Policies and ethics