Skip to main content

Applications of Digital Holography for Information Security

  • Chapter

Part of the book series: Advanced Sciences and Technologies for Security Applications ((ASTSA,volume 1))

Summary

Secure optical storage based on a configuration of a joint transform correlator (JTC) using a photorefractive material is presented. A key code designed by an optimized algorithm so that its Fourier transform has a uniform amplitude distribution and a uniformly random phase distribution is introduced. Original two-dimensional data and the key code are placed side-by-side at the input plane. Both of them are stored in a photorefractive material as a joint power spectrum. The retrieval of the original data can be achieved with the same key code. We can record multiple two-dimensional data in the same crystal by angular multiplexing and/or key-code multiplexing.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B. Javidi and J.L. Horner, “Optical pattern recognition for validation and security verification,” Opt. Eng. 33, 1752–1756 (1994).

    Article  ADS  Google Scholar 

  2. P. Réfrégier and B. Javidi, “Optical image encryption based on input plane and Fourier plane random encoding,” Opt. Lett. 20, 767–769 (1995).

    Article  ADS  Google Scholar 

  3. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am A 15, 2629–2638 (1998).

    Article  ADS  Google Scholar 

  4. H.-Y. Li, Y. Qiao, and D. Psaltis, “Optical network for real-time face recognition,” Appl. Opt. 32, 5026–5035 (1993).

    Article  ADS  Google Scholar 

  5. C.L. Wilson, C.I. Watson, and E.G. Paek, “Combined optical and neural network fingerprint matching,” Proc. SPIE 3073, 373–382 (1997).

    Article  ADS  Google Scholar 

  6. A. Pu, R. Denkewalter, and D. Psaltis, “Real-time vehicle navigation using a holographic memory,” Opt. Eng. 36, 2737–2746 (1997).

    Article  ADS  Google Scholar 

  7. P. Lalanne, H. Richard, J.C. Rodier, P. Chavel, J. Taboury, K. Madani, P. Garda, and F. Devos, “2D generation of random numbers by multimode fiber speckle for silicon arrays of processing elements,” Opt. Commun. 76, 387–394 (1990).

    Article  ADS  Google Scholar 

  8. N. Yoshikawa, M. Itoh, and T. Yatagai, “Binary computer-generated holograms for security applications from a synthetic double-exposure method by electronbeam lithography,” Opt. Lett. 23, 1483–1485 (1998).

    Article  ADS  Google Scholar 

  9. J.F. Heanue, M.C. Bashaw, and L. Hesselink, “Encrypted holographic data storage based on orthogonal-phase-code multiplexing,” Appl. Opt. 34, 6012–6015 (1995).

    Article  ADS  Google Scholar 

  10. R.L. van Renesse, Optical Document Security (Artech House, Boston, 1998).

    Google Scholar 

  11. J.L. Horner and B. Javidi, eds., Optical Engineering, Special Issue on Optical Security, Vol. 38 (SPIE, Bellingham, WA, 1999).

    Google Scholar 

  12. B. Javidi and T. Nomura, “Polarization encoding for optical security systems,” Opt. Eng. 39, 2439–2443 (2000).

    Article  ADS  Google Scholar 

  13. B. Hennelly and J.T. Sheridan, “Optical image encryption by random shifting in fractional Fourier domains,” Opt. Lett. 28, 269–271 (2003).

    Article  ADS  Google Scholar 

  14. T.F. Krile, M.O. Hagler, W.D. Redus, and J.F. Walkup, “Multiplex holography with chirp-modulated binary phase-coded reference-beam masks,” Appl. Opt. 18, 52–56 (1979).

    Article  ADS  Google Scholar 

  15. J.E. Ford, Y. Fainman, and S.H. Lee, “Array interconnection by phase-coded optical correlation,” Opt. Lett. 15, 1088–1090 (1990).

    Article  ADS  Google Scholar 

  16. C. Denz, G. Pauliat, G. Roosen, and T. Tschudi, “Volume hologram multiplexing using a deterministic phase encoding method,” Opt. Commun. 85, 171–176 (1991).

    Article  ADS  Google Scholar 

  17. H. Lee and S.K. Jin, “Experimental study of volume holographic interconnects using random patterns,” Appl. Phys. Lett. 62, 2191–2193 (1993).

    Article  ADS  Google Scholar 

  18. R.K. Wang, I.A. Watson, and C.R. Chatwin, “Random phase encoding for optical security,” Opt. Eng. 35, 2464–2469 (1996).

    Article  ADS  Google Scholar 

  19. Y.H. Kang, K.H. Kim, and B. Lee, “Volume hologram scheme using optical fiber for spatial multiplexing,” Opt. Lett. 22, 739–741 (1997).

    Article  ADS  Google Scholar 

  20. B. Javidi, A. Sergent, G. Zhang, and L. Guibert, “Fault tolerance properties of a double phase encoding encryption technique,” Opt. Eng. 36, 992–998 (1997).

    Article  ADS  Google Scholar 

  21. F. Goudail, F. Bollaro, B. Javidi, and P. Réfrégier, “Influence of a perturbation in a double phase-encoding system,” J. Opt. Soc. Am A 15, 2629–2638 (1998).

    Article  ADS  Google Scholar 

  22. B. Javidi and E. Ahouzi, “Optical security system with Fourier plane encoding,” Appl. Opt. 37, 6247–6255 (1998).

    Article  ADS  Google Scholar 

  23. O. Matoba and B. Javidi, “Encrypted optical memory system using three-dimensional keys in the Fresnel domain,” Opt. Lett. 24, 762–764 (1999).

    Article  ADS  Google Scholar 

  24. O. Matoba and B. Javidi, “Encrypted optical storage with angular multiplexing,” Appl. Opt. 38, 7288–7293 (1999).

    Article  ADS  Google Scholar 

  25. P.C. Mogensen and J. Glückstad, “Phase-only optical encryption,” Opt. Lett. 25, 566–568 (2000).

    Article  ADS  Google Scholar 

  26. G. Unnikrishnan, J. Joseph, and K. Singh, “Optical encryption by double-random phase encoding in the fractional Fourier domain,” Opt. Lett. 25, 887–889 (2000).

    Article  ADS  Google Scholar 

  27. Z. Zalevsky, D. Mendlovic, U. Levy, and G. Shabtay, “A new optical random coding technique for security systems,” Opt. Commun. 180, 15–20 (2000).

    Article  ADS  Google Scholar 

  28. T. Nomura and B. Javidi, “Optical encryption using a joint transform correlator architecture,” Opt. Eng. 39, 2031–2035 (2000).

    Article  ADS  Google Scholar 

  29. B. Zhu, S. Liu, and Q. Ran, “Optical image encryption based on multifractional Fourier transforms,” Opt. Lett. 25, 1159–1161 (2000).

    Article  ADS  Google Scholar 

  30. E. Tajahuerce, J. Lancis, B. Javidi, and P. Andres, “Optical security and encryption with totally incoherent light,” Opt. Lett. 26, 678–680 (2001).

    Article  ADS  Google Scholar 

  31. S. Liu, Q. Mi, and B. Zhu, “Optical image encryption with multistage and multichannel fractional Fourier-domain filtering,” Opt. Lett. 26, 1242–1244 (2001).

    Article  ADS  Google Scholar 

  32. X. Tan, O. Matoba, T. Shimura, and K. Kuroda, “Improvement in holographic storage capacity by use of double-random phase encryption,” Appl. Opt. 40, 4721–4727 (2001).

    Article  ADS  Google Scholar 

  33. H.T. Chang, W.C. Lu, and C.J. Kuo, “Multiple-phase retrieval for optical security systems by use of random-phase encoding,” Appl. Opt. 41, 4825–4834 (2002).

    Article  ADS  Google Scholar 

  34. N.K. Nishchal, J. Joseph, and K. Singh, “Optical phase encryption by phase contrast using electrically addressed spatial light modulator,” Opt. Commun. 217, 117–122 (2003).

    Article  ADS  Google Scholar 

  35. T. Nomura, S. Mikan, Y. Morimoto, and B. Javidi, “Secure optical data storage with random phase key codes by use of a configuration of a joint transform correlator,” Appl. Opt. 42, 1508–1514 (2003).

    Article  ADS  Google Scholar 

  36. H.J. Caulfield, ed., Handbook of Optical Holography (Academic, London, 1979).

    Google Scholar 

  37. L. Onural and P.D. Scott, “Digital decoding of in-line holograms,” Opt. Eng. 26, 1124–1132 (1987).

    ADS  Google Scholar 

  38. U. Schnars, “Direct phase determination in hologram interferometry with use of digitally recorded holograms,” J. Opt. Soc. Am A 11, 2011–2015 (1994).

    Article  ADS  Google Scholar 

  39. U. Schnars and W.P.O. Jüptner, “Direct recording of holograms by a CCD target and numerical reconstruction,” Appl. Opt. 33, 179–181 (1994).

    Article  ADS  Google Scholar 

  40. G. Pedrini, Y.L. Zou, and H.J. Tiziani, “Digital double-pulsed holographic interferometry for vibration analysis,” J. Mod. Opt. 40, 367–374 (1995).

    Article  ADS  Google Scholar 

  41. Y. Takaki, H. Kawai, and H. Ohzu, “Hybrid holographic microscopy free of conjugate and zero-order images,” Appl. Opt. 38, 4990–4996 (1999).

    Article  ADS  Google Scholar 

  42. J.C. Marron and K.S. Schroeder, “Three-dimensional lensless imaging using laser frequency diversity,” Appl. Opt. 31, 255–262 (1992).

    Article  ADS  Google Scholar 

  43. U. Schnars, T.M. Kreis, and W.P.O. Jüptner, “Digital recording and numerical reconstruction of holograms: reduction of the spatial frequency spectrum,” Opt. Eng. 35, 977–982 (1996).

    Article  ADS  Google Scholar 

  44. E. Cuche, F. Bevilacqua, and C. Depeursinge, “Digital holography for quantitative phase-contrast imaging,” Opt. Lett. 24, 291–293 (1999).

    Article  ADS  Google Scholar 

  45. J.H. Bruning, D.R. Herriott, J.E. Gallagher, D.P. Rosenfeld, A.D. White, and D.J. Brangaccio, “Digital wavefront measuring interferometer for testing optical surfaces and lenses,” Appl. Opt. 13, 2693–2703 (1974).

    Article  ADS  Google Scholar 

  46. K. Creath, “Phase-measurement interferometry techniques,” in E. Wolf, ed., Progress in Optics, Vol. 26, pp. 349–393 (North-Holland, Amsterdam, 1988).

    Google Scholar 

  47. J. Schwider, “Advanced evaluation techniques in interferometry,” in E. Wolf, ed., Progress in Optics, Vol. 28, pp. 271–359 (North-Holland, Amsterdam, 1990).

    Google Scholar 

  48. I. Yamaguchi and T. Zhang, “Phase-shifting digital holography,” Opt. Lett. 22, 1268–1270 (1997).

    Article  ADS  Google Scholar 

  49. T. Zhang and I. Yamaguchi, “Three-dimensional microscopy with phase-shifting digital holography,” Opt. Lett. 23, 1221–1223 (1998).

    Article  ADS  Google Scholar 

  50. I. Yamaguchi, J. Kato, S. Ohta, and J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40, 6177–6186 (2001).

    Article  ADS  Google Scholar 

  51. B. Javidi and T. Nomura, “Securing information by means of digital holography,” Opt. Lett. 25, 29–30 (2000).

    ADS  Google Scholar 

  52. E. Tajahuerce, O. Matoba, S.C. Verrall, and B. Javidi, “Optoelectronic information encryption using phase-shifting interferometry,” Appl. Opt. 39, 2313–2320 (2000).

    Article  ADS  Google Scholar 

  53. E. Tajahuerce and B. Javidi, “Encrypting three-dimensional information with digital holography,” Appl. Opt. 39, 6595–6601 (2000).

    Article  ADS  Google Scholar 

  54. J.W. Cooley and J.W. Tukey, “An algorithm for the machine calculation of complex Fourier series,” Math. Comput. 19, 297–301 (1965).

    Article  MATH  MathSciNet  Google Scholar 

  55. S. Lai and M.A. Neifeld, “Digital wavefront reconstruction and its application to image encryption,” Opt. Commun. 178, 283–289 (2000).

    Article  ADS  Google Scholar 

  56. R. Arizaga, R. Henao, and R. Torroba, “Fully digital encryption technique,” Opt. Commun. 221, 43–47 (2003).

    Article  ADS  Google Scholar 

  57. O. Matoba, T.J. Naughton, Y. Frauel, N. Bertaux, and B. Javidi, “Real-time three-dimensional object reconstruction by use of a phase-encoded digital hologram,” Appl. Opt. 41, 6187–6192 (2002).

    Article  ADS  Google Scholar 

  58. O. Matoba and B. Javidi, “Optical retrieval of encrypted digital holograms for secure real-time display,” Opt. Lett. 27, 321–323 (2002).

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Nomura, T., Tajahuerce, E., Matoba, O., Javidi, B. (2005). Applications of Digital Holography for Information Security. In: Javidi, B. (eds) Optical and Digital Techniques for Information Security. Advanced Sciences and Technologies for Security Applications, vol 1. Springer, New York, NY . https://doi.org/10.1007/0-387-25096-4_13

Download citation

Publish with us

Policies and ethics