Skip to main content

NKT Cells and Autoimmune Type 1 Diabetes

  • Chapter
Molecular Autoimmunity
  • 515 Accesses

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Adkins, B., Leclerc, C., and Marshall-Clarke, S. (2004). Neonatal adaptive immunity comes of age. Nat. Rev. Immunol., 4, 553–564.

    CAS  PubMed  Google Scholar 

  • Arreaza, G.A., Cameron, M.J., Jaramillo, A., Gill, B.M., Hardy, D., Laupland, K.B., Rapoport, M.J., Zucker, P., Chakrabarti, S., Chensue, S.W., Qin, H.Y., Singh, B., and Delovitch, T.L. (1997). Neonatal activation of CD28 signaling overcomes T cell anergy and prevents autoimmune diabetes by an IL-4-dependent mechanism. J. Clin. Invest., 100, 2243–2253.

    CAS  PubMed  Google Scholar 

  • Atkinson, M.A. and Leiter, E.H. (1999). The NOD mouse model of type 1 diabetes: As good as it gets? Nat. Med., 5, 601–604.

    Article  CAS  PubMed  Google Scholar 

  • Baxter, A.G., Kinder, S.J., Hammond, K.J., Scollay, R., and Godfrey, D.I. (1997). Association between alphabetaTCR+CD4−CD8− T-cell deficiency and IDDM in NOD/Lt mice. Diabetes, 46, 572–582.

    CAS  PubMed  Google Scholar 

  • Beaudoin, L., Laloux, V., Novak, J., Lucas, B., and Lehuen, A. (2002). NKT cells inhibit the onset of diabetes by impairing the development of pathogenic T cells specific for pancreatic beta cells. Immunity, 17, 725–736.

    Article  CAS  PubMed  Google Scholar 

  • Benlagha, K., Kyin, T., Beavis, A., Teyton, L., and Bendelac, A. (2002). A thymic precursor to the NKT cell lineage. Science, 296, 553–555.

    Article  CAS  PubMed  Google Scholar 

  • Benlagha, K., Weiss, A., Beavis, A., Teyton, L., and Bendelac, A. (2000). In vivo identification of glycolipid antigen-specific T cells using fluorescent CD1d tetramers. J. Exp. Med., 191, 1895–1903.

    CAS  PubMed  Google Scholar 

  • Berzins, S.P., Kyparissoudis, K., Pellicci, D.G., Hammond, K.J., Sidobre, S., Baxter, A., Smyth, M.J., Kronenberg, M., and Godfrey, D.I. (2004). Systemic NKT cell deficiency in NOD mice is not detected in peripheral blood: Implications for human studies. Immunol. Cell Biol., 82, 247–252.

    PubMed  Google Scholar 

  • Bleul, C.C., Fuhlbrigge, R.C., Casasnovas, J.M., Aiuti, A., and Springer, T.A. (1996). A highly efficacious lymphocyte chemoattractant, stromal cell-derived factor-1 (SDF-1). J. Exp. Med., 184, 1101–1109.

    Article  CAS  PubMed  Google Scholar 

  • Brigl, M., Bry, L., Kent, S.C., Gumperz, J.E., and Brenner, M.B. (2003). Mechanism of CD1d-restricted natural killer T cell activation during microbial infection. Nat. Immunol., 4, 1230–1237.

    Article  CAS  PubMed  Google Scholar 

  • Bystry, R.S., Aluvihare, V., Welch, K.A., Kallikourdis, M., and Betz, A.G. (2001). B cells and professional APCs recruit regulatory T cells via CCL4. Nat. Immunol., 2, 1126–1132.

    Article  CAS  PubMed  Google Scholar 

  • Cameron, M.J., Arreaza, G.A., Grattan, M., Meagher, C., Sharif, S., Burdick, M.D., Strieter, R.M., Cook, D.N., and Delovitch, T.L. (2000). Differential expression of CC chemokines and the CCR5 receptor in the pancreas is associated with progression to type 1 diabetes. J. Immunol., 165, 1102–1110.

    CAS  PubMed  Google Scholar 

  • Chiba, A., Oki, S., Miyamoto, K., Hashimoto, H., Yamamura, T., and Miyake, S. (2004). Suppression of collagen-induced arthritis by natural killer T cell activation with OCH, a sphingosine-truncated analog of alpha-galactosylceramide. Arthritis Rheum., 50, 305–313.

    Article  CAS  PubMed  Google Scholar 

  • Christianson, S.W., Shultz, L.D., and Leiter, E.H. (1993). Adoptive transfer of diabetes into immunodeficient NOD-scid/scid mice. Relative contributions of CD4+ and CD8+ T-cells from diabetic versus prediabetic NOD.NON-Thy-1a donors. Diabetes, 42, 44–55.

    CAS  PubMed  Google Scholar 

  • Cruikshank, W.W., Kornfeld, H., and Center, D.M. (2000). Interleukin-16. J. Leukoc. Biol., 67, 757–766.

    CAS  PubMed  Google Scholar 

  • Cui, J., Shin, T., Kawano, T., Sato, H., Kondo, E., Toura, I., Kaneko, Y., Koseki, H., Kanno, M., and Taniguchi, M. (1997). Requirement for Valpha14 NKT cells in IL-12-mediated rejection of tumors. Science, 278, 1623–1626.

    Article  CAS  PubMed  Google Scholar 

  • Dahlen, E., Dawe, K., Ohlsson, L., and Hedlund, G. (1998). Dendritic cells and macrophages are the first and major producers of TNF-alpha in pancreatic islets in the nonobese diabetic mouse. J. Immunol., 160, 3585–3593.

    CAS  PubMed  Google Scholar 

  • Delovitch, T.L. and Singh, B. (1997). The nonobese diabetic mouse as a model of autoimmune diabetes: Immune dysregulation gets the NOD. Immunity, 7, 727–738.

    Article  CAS  PubMed  Google Scholar 

  • Falcone, M., Facciotti, F., Ghidoli, N., Monti, P., Olivieri, S., Zaccagnino, L., Bonifacio, E., Casorati, G., Sanvito, F., and Sarvetnick, N. (2004). Up-regulation of CD1d expression restores the immunoregulatory function of NKT cells and prevents autoimmune diabetes in nonobese diabetic mice. J. Immunol., 172, 5908–5916.

    CAS  PubMed  Google Scholar 

  • Fuji, N., Ueda, Y., Fujiwara, H., Toh, T., Yoshimura, T., and Yamagishi, H. (2000). Antitumor effect of alpha-galactosylceramide (KRN7000) on spontaneous hepatic metastases requires endogenous interleukin-12 in the liver. Clin. Cancer Res., 6, 3380–3387.

    CAS  PubMed  Google Scholar 

  • Gapin, L., Matsuda, J.L., Surh, C.D., and Kronenberg, M. (2001). NKT cells derive from double-positive thymocytes that are positively selected by CD1d. Nat. Immunol., 2, 971–978.

    Article  CAS  PubMed  Google Scholar 

  • Godfrey, D.I., Hammond, K.J., Poulton, L.D., Smyth, M.J., and Baxter, A.G. (2000). NKT cells: Facts, functions and fallacies. Immunol. Today, 21, 573–583.

    CAS  PubMed  Google Scholar 

  • Gombert, J.M., Herbelin, A., Tancrede-Bohin, E., Dy, M., Carnaud, C., and Bach, J.F. (1996). Early quantitative and functional deficiency of NK1+-like thymocytes in the NOD mouse. Eur. J. Immunol., 26, 2989–2998.

    CAS  PubMed  Google Scholar 

  • Hammond, K.J., Cain, W., van Driel, I., and Godfrey, D. (1998). Three day neonatal thymectomy selectively depletes NK1.1+ T cells. Int. Immunol., 10, 1491–1499.

    Article  CAS  PubMed  Google Scholar 

  • Hammond, K.J., Pellicci, D.G., Poulton, L.D., Naidenko, O.V., Scalzo, A.A., Baxter, A.G., and Godfrey, D.I. (2001). CD1d-restricted NKT cells: An interstrain comparison. J. Immunol., 167, 1164–1173.

    CAS  PubMed  Google Scholar 

  • Hong, S., Wilson, M.T., Serizawa, I., Wu, L., Singh, N., Naidenko, O.V., Miura, T., Haba, T., Scherer, D.C., Wei, J., Kronenberg, M., Koezuka, Y., and Van Kaer, L. (2001). The natural killer T-cell ligand alpha-galactosylceramide prevents autoimmune diabetes in non-obese diabetic mice. Nat. Med., 7, 1052–1056.

    Article  CAS  PubMed  Google Scholar 

  • Hussain, S., Salojin, K.V., and Delovitch, T.L. (2004). Hyperresponsiveness, resistance to B-cell receptor-dependent activation-induced cell death, and accumulation of hyperactivated B-cells in islets is associated with the onset of insulitis but not type 1 diabetes. Diabetes, 53, 2003–2011.

    CAS  PubMed  Google Scholar 

  • Kaser, A., Dunzendorfer, S., Offner, F.A., Ludwiczek, O., Enrich, B., Koch, R.O., Cruikshank, W.W., Wiedermann, C.J., and Tilg, H. (2000). B lymphocyte-derived IL-16 attracts dendritic cells and Th cells. J. Immunol., 165, 2474–2480.

    CAS  PubMed  Google Scholar 

  • Kawano, T., Tanaka, Y., Shimizu, E., Kaneko, Y., Kamata, N., Sato, H., Osada, H., Sekiya, S., Nakayama, T., and Taniguchi, M. (1999). A novel recognition motif of human NKT antigen receptor for a glycolipid ligand. Int. Immunol., 11, 881–887.

    Article  CAS  PubMed  Google Scholar 

  • Kronenberg, M. and Gapin, L. (2002). The unconventional lifestyle of NKT cells. Nat. Rev. Immunol., 2, 557–568.

    CAS  PubMed  Google Scholar 

  • Laloux, V., Beaudoin, L., Jeske, D., Carnaud, C., and Lehuen, A. (2001). NKT cell-induced protection against diabetes in Valpha14-Jalpha281 transgenic nonobese diabetic mice is associated with a Th2 shift circumscribed regionally to the islets and functionally to islet autoantigen. J. Immunol., 166, 3749–3756.

    CAS  PubMed  Google Scholar 

  • Laloux, V., Beaudoin, L., Ronet, C., and Lehuen, A. (2002). Phenotypic and functional differences between NKT cells colonizing splanchnic and peripheral lymph nodes. J. Immunol., 168, 3251–3258.

    CAS  PubMed  Google Scholar 

  • Lee, P.T., Putnam, A., Benlagha, K., Teyton, L., Gottlieb, P.A., and Bendelac, A. (2002). Testing the NKT cell hypothesis of human IDDM pathogenesis. J. Clin. Invest., 110, 793–800.

    CAS  PubMed  Google Scholar 

  • Lehuen, A., Lantz, O., Beaudoin, L., Laloux, V., Carnaud, C., Bendelac, A., Bach, J.F., and Monteiro, R.C. (1998). Overexpression of natural killer T cells protects Valpha14-Jalpha281 transgenic nonobese diabetic mice against diabetes. J. Exp. Med., 188, 1831–1839.

    Article  CAS  PubMed  Google Scholar 

  • Lynch, E.A., Heijens, C.A., Horst, N.F., Center, D.M., and Cruikshank, W.W. (2003). Cutting edge: IL-16/CD4 preferentially induces Th1 cell migration: Requirement of CCR5. J. Immunol., 171, 4965–4968.

    CAS  PubMed  Google Scholar 

  • MacDonald, H.R. (2002). Development and selection of NKT cells. Curr. Opin. Immunol., 14, 250–254.

    Article  CAS  PubMed  Google Scholar 

  • Mashikian, M.V., Ryan, T.C., Seman, A., Brazer, W., Center, D.M., and Cruikshank, W.W. (1999). Reciprocal desensitization of CCR5 and CD4 is mediated by IL-16 and macrophage inflammatory protein-1 beta, respectively. J. Immunol., 163, 3123–3130.

    CAS  PubMed  Google Scholar 

  • Mathis, D., Vence, L., and Benoist, C. (2001). Beta-cell death during progression to diabetes. Nature, 414, 792–798.

    Article  CAS  PubMed  Google Scholar 

  • Matin, K., Salam, M.A., Akhter, J., Hanada, N., and Senpuku, H. (2002). Role of stromal cell-derived factor-1 in the development of autoimmune diseases in non-obese diabetic mice, Immunology, 107, 222–232.

    Article  CAS  PubMed  Google Scholar 

  • Matsuda, J.L., Naidenko, O.V., Gapin, L., Nakayama, T., Taniguchi, M., Wang, C.R., Koezuka, Y., and Kronenberg, M. (2000). Tracking the response of natural killer T cells to a glycolipid antigen using CD1d tetramers. J. Exp. Med., 192, 741–754.

    Article  CAS  PubMed  Google Scholar 

  • Mi, Q.S., Ly, D., Zucker, P., McGarry, M., and Delovitch, T.L. (2004). Interleukin-4 but not interleukin-10 protects against spontaneous and recurrent type 1 diabetes by activated CD1d-restricted invariant natural killer T-cells. Diabetes, 53, 1303–1310.

    CAS  PubMed  Google Scholar 

  • Mi, Q.S., Meagher, C., and Delovitch, T.L. (2003). CD1d-restricted NKT regulatory cells: Functional genomic analyses provide new insights into the mechanisms of protection against Type 1 diabetes. Novartis Found. Symp., 252, 146–160.

    CAS  PubMed  Google Scholar 

  • Miyamoto, K., Miyake, S., and Yamamura, T. (2001). A synthetic glycolipid prevents autoimmune encephalomyelitis by inducing TH2 bias of natural killer T cells. Nature, 413, 531–534.

    Article  CAS  PubMed  Google Scholar 

  • Naumov, Y.N., Bahjat, K.S., Gausling, R., Abraham, R., Exley, M.A., Koezuka, Y., Balk, S.B., Strominger, J.L., Clare-Salzer, M., and Wilson, S.B. (2001). Activation of CD1d-restricted T cells protects NOD mice from developing diabetes by regulating dendritic cell subsets. Proc. Natl. Acad. Sci. USA, 98, 13838–13843.

    Article  CAS  PubMed  Google Scholar 

  • Oikawa, Y., Shimada, A., Yamada, S., Motohashi, Y., Nakagawa, Y., Irie, J., Maruyama, T., and Saruta, T. (2002). High frequency of Valpha24(+) Vbeta11(+) T-cells observed in type 1 diabetes. Diabetes Care, 25, 1818–1823.

    PubMed  Google Scholar 

  • Oikawa, Y., Shimada, A., Yamada, S., Motohashi, Y., Nakagawa, Y., Irie, J., Maruyama, T., and Saruta, T. (2003). NKT cell frequency in Japanese type 1 diabetes. Ann. NY Acad. Sci., 1005, 230–232.

    PubMed  Google Scholar 

  • Oki, S., Chiba, A., Yamamura, T., and Miyake, S. (2004). The clinical implication and molecular mechanism of preferential IL-4 production by modified glycolipid-stimulated NKT cells. J. Clin. Invest., 113, 1631–1640.

    Article  CAS  PubMed  Google Scholar 

  • Ortaldo, J.R., Young, H.A., Winkler-Pickett, R.T., Bere, E.W., Jr., Murphy, W.J., and Wiltrout, R.H. (2004). Dissociation of NKT stimulation, cytokine induction, and NK activation in vivo by the use of distinct TCR-binding ceramides. J. Immunol., 172, 943–953.

    CAS  PubMed  Google Scholar 

  • Pankewycz, O., Strom, T.B., and Rubin-Kelley, V.E. (1991). Islet-infiltrating T cell clones from nonobese diabetic mice that promote or prevent accelerated onset of diabetes. Eur. J. Immunol., 21, 873–879.

    CAS  PubMed  Google Scholar 

  • Pellicci, D.G., Hammond, K.J., Uldrich, A.P., Baxter, A.G., Smyth, M.J., and Godfrey, D.I. (2002). A natural killer T (NKT) cell developmental pathway involving a thymus-dependent NK1.1(−) CD4(+) CD1d-dependent precursor stage. J. Exp. Med., 195, 835–844.

    Article  CAS  PubMed  Google Scholar 

  • Poulton, L.D., Smyth, M.J., Hawke, C.G., Silveira, P., Shepherd, D., Naidenko, O.V., Godfrey, D.I., and Baxter, A.G. (2001). Cytometric and functional analyses of NK and NKT cell deficiencies in NOD mice. Int. Immunol., 13, 887–896.

    Article  CAS  PubMed  Google Scholar 

  • Pulendran, B., Lingappa, J., Kennedy, M.K., Smith, J., Teepe, M., Rudensky, A., Maliszewski, C.R., and Maraskovsky, E. (1997). Developmental pathways of dendritic cells in vivo: Distinct function, phenotype, and localization of dendritic cell subsets in FLT3 ligand-treated mice. J. Immunol., 159, 2222–2231.

    CAS  PubMed  Google Scholar 

  • Salomon, B., Lenschow, D.J., Rhee, L., Ashourian, N., Singh, B., Sharpe, A., and Bluestone, J.A. (2000). B7/CD28 costimulation is essential for the homeostasis of the CD4+CD25+ immunoregulatory T cells that control autoimmune diabetes. Immunity, 12, 431–440.

    Article  CAS  PubMed  Google Scholar 

  • Serreze, D.V., Leiter, E.H., Christianson, G.J., Greiner, D., and Roopenian, D.C. (1994). Major histocompatibility complex class 1-deficient NOD-B2m null mice are diabetes and insulitis resistant. Diabetes, 43, 505–509.

    CAS  PubMed  Google Scholar 

  • Sharif, S., Arreaza, G.A., Zucker, P., Mi, Q.S., and Delovitch, T.L. (2002). Regulation of autoimmune disease by natural killer T cells. J. Mol. Med., 80,290–300.

    Article  CAS  PubMed  Google Scholar 

  • Sharif, S., Arreaza, G.A., Zucker, P., Mi, Q.S., Sondhi, J., Naidenko, O.V., Kronenberg, M., Koezuka, Y., Delovitch, T.L., Gombert, J.M., Leite-De-Moraes, M., Gouarin, C., Zhu, R., Hameg, A., Nakayama, T., Taniguchi, M., Lepault, F., Lehuen, A., Bach, J.F., and Herbelin, A. (2001). Activation of natural killer T cells by alpha-galactosylceramide treatment prevents the onset and recurrence of autoimmune type 1 diabetes. Nat. Med., 7, 1057–1062.

    Article  CAS  PubMed  Google Scholar 

  • Sonoda, K.H., Faunce, D.E., Taniguchi, M., Exley, M., Balk, S., and Stein-Streilein, J. (2001). NKT cell-derived IL-10 is essential for the differentiation of antigen-specific T regulatory cells in systemic tolerance. J. Immunol., 166, 42–50.

    CAS  PubMed  Google Scholar 

  • Sonoda, K.H. and Stein-Streilein, J. (2002). CD1d on antigen-transporting APC and splenic marginal zone B cells promotes NKT cell-dependent tolerance. Eur J. Immunol., 32, 848–857.

    Article  CAS  PubMed  Google Scholar 

  • Taniguchi, M., Harada, M., Kojo, S., Nakayama, T., and Wakao, H. (2003). The regulatory role of Valpha14 NKT cells in innate and acquired immune response. Annu. Rev. Immunol., 21, 483–513.

    Article  CAS  PubMed  Google Scholar 

  • Thomas-Vaslin, V., Damotte, D., Coltey, M., Le Douarin, N.M., Coutinho, A., and Salaun, J. (1997). Abnormal T cell selection on NOD thymic epithelium is sufficient to induce autoimmune manifestations in C57BL/6 athymic nude mice. Proc. Natl. Acad. Sci. USA, 94, 4598–4603

    Article  CAS  PubMed  Google Scholar 

  • Tisch, R. and McDevitt, H. (1996). Insulin-dependent diabetes mellitus. Cell, 85, 291–297.

    Article  CAS  PubMed  Google Scholar 

  • Toura, I., Kawano, T., Akutsu, Y., Nakayama, T., Ochiai, T., and Taniguchi, M. (1999). Cutting edge: Inhibition of experimental tumor metastasis by dendritic cells pulsed with alpha-galactosylceramide. J. Immunol., 163, 2387–2391.

    CAS  PubMed  Google Scholar 

  • Wang, B., Geng, Y.B., and Wang, C.R. (2001). CD1-restricted NKT cells protect nonobese diabetic mice from developing diabetes. J. Exp. Med., 194, 313–320.

    PubMed  Google Scholar 

  • Wicker, L.S., Leiter, E.H., Todd, J.A., Renjilian, R.J., Peterson, E., Fischer, P.A., Podolin, P.L., Zijlstra, M., Jaenisch, R., and Peterson, L.B. (1994). Beta 2-microglobulin-deficient NOD mice do not develop insulitis or diabetes. Diabetes, 43, 500–504.

    CAS  PubMed  Google Scholar 

  • Wilson, S.B. and Delovitch, T.L. (2003). Janus-like role of regulatory iNKT cells in autoimmune disease and tumour immunity. Nat. Rev. Immunol., 3, 211–222.

    Article  CAS  PubMed  Google Scholar 

  • Wilson, S.B., Kent, S.C., Patton, K.T., Orban, T., Jackson, R.A., Exley, M., Porcelli, S., Schatz, D.A., Atkinson, M.A., Balk, S.P., Strominger, J.L., and Hafler, D.A. (1998). Extreme Th1 bias of invariant Valpha24JalphaQ T cells in type 1 diabetes. Nature, 391, 177–181.

    CAS  PubMed  Google Scholar 

  • Wu, A.J., Hua, H., Munson, S.H., and McDevitt, H.O. (2002). Tumor necrosis factor-alpha regulation of CD4+CD25+ T cell levels in NOD mice. Proc. Natl. Acad. Sci. USA, 99, 12287–12292.

    CAS  PubMed  Google Scholar 

  • Yamamura, T., Miyamoto, K., Illes, Z., Pal, E., Araki, M., and Miyake, S. (2004). NKT cell-stimulating synthetic glycolipids as potential therapeutics for autoimmune disease. Curr. Top. Med. Chem., 4, 561–567.

    Article  CAS  PubMed  Google Scholar 

  • Yang, Y., Bao, M., and Yoon, J.W. (2001). Intrinsic defects in the T-cell lineage results in natural killer T-cell deficiency and the development of diabetes in the nonobese diabetic mouse. Diabetes, 50, 2691–2699.

    CAS  PubMed  Google Scholar 

  • Zlotnik, A. and Yoshie, O. (2000). Chemokines: A new classification system and their role in immunity. Immunity, 12, 121–127.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Hussain, S., Ly, D., Wagner, M., Delovitch, T.L. (2005). NKT Cells and Autoimmune Type 1 Diabetes. In: Zouali, M. (eds) Molecular Autoimmunity. Springer, Boston, MA. https://doi.org/10.1007/0-387-24534-0_4

Download citation

Publish with us

Policies and ethics