Skip to main content

The Use of Mass Spectrometry in Studying Protein-Protein Interaction

  • Chapter

Part of the book series: Protein Reviews ((PRON,volume 3))

Abstract

Mass spectrometry has now become a mainstream technique in biology research. We first give a brief account highlighting the most important developments in mass spectrometry that may be useful for the study of protein-protein interaction; next, we discuss some interesting issues that are starting to emerge as we learn more about protein complexes; finally, we discuss in some detail one example of using mass spectrometry to study protein- protein interaction in the area of human genome maintenance, and propose a new concept that we termed “network analysis proteomics” that aims to identify modular protein interaction networks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Aebersold, R., and Mann, M. (2003). Mass spectrometry-based proteomics. Nature 422:198–207.

    Article  PubMed  CAS  Google Scholar 

  • Alberts, B. (1998). The cell as a collection of protein machines: preparing the next generation of molecular biologists. Cell 92:291–294.

    Article  PubMed  CAS  Google Scholar 

  • Andersen, J.S., Lyon, C.E., Fox, A.H., Leung, A.K., Lam, Y.W., Steen, H., Mann, M., and Lamond, A.I. (2002). Directed proteomic analysis of the human nucleolus. Curr. Biol. 12:1–11.

    Article  PubMed  Google Scholar 

  • Bakkenist, C.J., and Kastan, M.B. (2003). DNA damage activates ATM through intermolecular autophosphorylation and dimer dissociation. Nature 421:499–506.

    Article  PubMed  CAS  Google Scholar 

  • Bellaoui, M., Chang, M., Ou, J., Xu, H., Boone, C., and Brown, G.W. (2003). Elg1 forms an alternative RFC complex important for DNA replication and genome integrity. EMBO J. 22:4304–4313.

    Article  PubMed  CAS  Google Scholar 

  • Ben Aroya, S., Koren, A., Liefshitz, B., Steinlauf, R., and Kupiec, M. (2003). ELG1, a yeast gene required for genome stability, forms a complex related to replication factor C. Proc. Natl. Acad. Sci. USA 100:9906–9911.

    Article  PubMed  CAS  Google Scholar 

  • Bermudez, V.P., Maniwa, Y., Tappin, I., Ozato, K., Yokomori, K., and Hurwitz, J. (2003). The alternative Ctf18-Dcc1-Ctf8-replication factor C complex required for sister chromatid cohesion loads proliferating cell nuclear antigen onto DNA. Proc. Natl. Acad. Sci. USA 100:10237–10242.

    Article  PubMed  CAS  Google Scholar 

  • Blagoev, B., Kratchmarova, I., Ong, S.E., Nielsen, M., Foster, L.J., and Mann, M. (2003). A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21:315–318.

    Article  PubMed  CAS  Google Scholar 

  • Cai, Y., Jin, J., Tomomori-Sato, C., Sato, S., Sorokina, I., Parmely, T.J., Conaway, R.C., and Conaway, J.W. (2003). Identification of new subunits of the multiprotein mammalian TRRAP/TIP60-containing histone acetyltransferase complex. J. Biol. Chem. 278:42733–42736.

    Article  PubMed  CAS  Google Scholar 

  • Corbin, R.W., Paliy, O., Yang, F., Shabanowitz, J., Platt, M., Lyons, C.E., Jr., Root, K., McAuliffe, J., Jordan, M.I., Kustu, S., Soupene, E., and Hunt, D.F. (2003). Toward a protein profile of Escherichia coli: comparison to its transcription profile. Proc. Natl. Acad. Sci. USA 100:9232–9237.

    Article  PubMed  CAS  Google Scholar 

  • Davalos, A.R., and Campisi, J. (2003). Bloom syndrome cells undergo p53-dependent apoptosis and delayed assembly of BRCA1 and NBS1 repair complexes at stalled replication forks. J. Cell Biol. 162:1197–1209.

    Article  PubMed  CAS  Google Scholar 

  • Fenyo, D., Qin, J., and Chait, B.T. (1998). Protein identification using mass spectrometric information. Electrophoresis 19:998–1005.

    Article  PubMed  CAS  Google Scholar 

  • Franchitto, A., and Pichierri, P. (2002). Bloom’s syndrome protein is required for correct relocalization of Rad50/Mre11/NBS1 complex after replication fork arrest. J. Cell Biol. 157:19–30.

    Article  PubMed  CAS  Google Scholar 

  • Gavin, A.C., Bosche, M., Krause, R., Grandi, P., Marzioch, M., Bauer, A., Schultz, J., Rick, J.M., Michon, A.M., Cruciat, C.M., Remor, M., Hofert, C., Schelder, M., Brajenovic, M., Ruffner, H., Merino, A., Klein, K., Hudak, M., Dickson, D., Rudi, T., Gnau, V., Bauch, A., Bastuck, S., Huhse, B., Leutwein, C., Heurtier, M.A., Copley, R.R., Edelmann, A., Querfurth, E., Rybin, V., Drewes, G., Raida, M., Bouwmeester, T., Bork, P., Seraphin, B., Kuster, B., Neubauer, G., and Superti-Furga, G. (2002). Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415:141–147.

    Article  PubMed  CAS  Google Scholar 

  • Goldberg, M., Stucki, M., Falck, J., D’Amours, D., Rahman, D., Pappin, D., Bartek, J., and Jackson, S.P. (2003). MDC1 is required for the intra-S-phase DNA damage checkpoint. Nature 421:952–956.

    Article  PubMed  CAS  Google Scholar 

  • Gygi, S.P., Rist, B., Gerber, S.A., Turecek, F., Gelb, M.H., and Aebersold, R. (1999). Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17:994–999.

    Article  PubMed  CAS  Google Scholar 

  • Ho, Y., Gruhler, A., Heilbut, A., Bader, G.D., Moore, L., Adams, S.L., Millar, A., Taylor, P., Bennett, K., Boutilier, K., Yang, L., Wolting, C., Donaldson, I., Schandorff, S., Shewnarane, J., Vo, M., Taggart, J., Goudreault, M., Muskat, B., Alfarano, C., Dewar, D., Lin, Z., Michalickova, K., Willems, A.R., Sassi, H., Nielsen, P.A., Rasmussen, K.J., Andersen, J.R., Johansen, L.E., Hansen, L.H., Jespersen, H., Podtelejnikov, A., Nielsen, E., Crawford, J., Poulsen, V., Sorensen, B.D., Matthiesen, J., Hendrickson, R.C., Gleeson, F., Pawson, T., Moran, M.F., Durocher, D., Mann, M., Hogue, C.W., Figeys, D., and Tyers, M. (2002). Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415:180–183.

    Article  PubMed  CAS  Google Scholar 

  • Kanellis, P., Agyei, R., and Durocher, D. (2003). Elg1 forms an alternative PCNA-interacting RFC complex required to maintain genome stability. Curr. Biol. 13:1583–1595.

    Article  PubMed  CAS  Google Scholar 

  • Krutchinsky, A.N., Kalkum, M., and Chait, B.T. (2001). Automatic identification of proteins with a MALDI-quadrupole ion trap mass spectrometer. Anal. Chem. 73:5066–5077.

    Article  PubMed  CAS  Google Scholar 

  • Lim, D.S., Kim, S.T., Xu, B., Maser, R.S., Lin, J., Petrini, J.H., and Kastan, M.B. (2000). ATM phosphorylates p95/nbs1 in an S-phase checkpoint pathway. Nature 404:613–617.

    Article  PubMed  CAS  Google Scholar 

  • Lindsey-Boltz, L.A., Bermudez, V.P., Hurwitz, J., and Sancar, A. (2001). Purification and characterization of human DNA damage checkpoint Rad complexes. Proc. Natl. Acad. Sci. USA 98:11236–11241.

    Article  PubMed  CAS  Google Scholar 

  • Mann, M., Hendrickson, R.C., and Pandey, A. (2001). Analysis of proteins and proteomes by mass spectrometry. Annu. Rev. Biochem. 70:437–473.

    Article  PubMed  CAS  Google Scholar 

  • Mayer, M.L., Gygi, S.P., Aebersold, R., and Hieter, P. (2001). Identification of RFC(Ctf18p, Ctf8p, Dcc1p): an alternative RFC complex required for sister chromatid cohesion in S. cerevisiae. Mol. Cell 7:959–970.

    Article  PubMed  CAS  Google Scholar 

  • Merkle, C.J., Karnitz, L.M., Henry-Sanchez, J.T., and Chen, J. (2003). Cloning and characterization of hCTF18, hCTF8, and hDCC1. Human homologs of a Saccharomyces cerevisiae complex involved in sister chromatid cohesion establishment. J. Biol. Chem. 278:30051–30056.

    Article  PubMed  CAS  Google Scholar 

  • Naiki, T., Kondo, T., Nakada, D., Matsumoto, K., and Sugimoto, K. (2001). Chl12 (Ctf18) forms a novel replication factor C-related complex and functions redundantly with Rad24 in the DNA replication checkpoint pathway. Mol. Cell Biol. 21:5838–5845.

    Article  PubMed  CAS  Google Scholar 

  • Paull, T.T., and Gellert, M. (1999). Nbs1 potentiates ATP-driven DNA unwinding and endonuclease cleavage by the Mre11/Rad50 complex. Genes Dev. 13:1276–1288.

    PubMed  CAS  Google Scholar 

  • Ranish, J.A., Yi, E.C., Leslie, D.M., Purvine, S.O., Goodlett, D.R., Eng, J., and Aebersold, R. (2003). The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33:349–355.

    Article  PubMed  CAS  Google Scholar 

  • Rigaut, G., Shevchenko, A., Rutz, B., Wilm, M., Mann, M., and Seraphin, B. (1999). A generic protein purification method for protein complex characterization and proteome exploration. Nat. Biotechnol. 17:1030–1032.

    Article  PubMed  CAS  Google Scholar 

  • Rountree, M.R., Bachman, K.E., and Baylin, S.B. (2000). DNMT1 binds HDAC2 and a new co-repressor, DMAP1, to form a complex at replication foci. Nat. Genet. 25:269–277.

    Article  PubMed  CAS  Google Scholar 

  • Rout, M.P., Aitchison, J.D., Suprapto, A., Hjertaas, K., Zhao, Y., and Chait, B.T. (2000). The yeast nuclear pore complex: composition, architecture, and transport mechanism. J. Cell Biol. 148:635–651.

    Article  PubMed  CAS  Google Scholar 

  • Sanders, S.L., Jennings, J., Canutescu, A., Link, A.J., and Weil, P.A. (2002). Proteomics of the eukaryotic transcription machinery: identification of proteins associated with components of yeast TFIID by multidimensional mass spectrometry. Mol. Cell Biol. 22:4723–4738.

    Article  PubMed  CAS  Google Scholar 

  • Shen, X., Ranallo, R., Choi, E., and Wu, C. (2003). Involvement of actin-related proteins in ATP-dependent chromatin remodeling. Mol. Cell 12:147–155.

    Article  PubMed  CAS  Google Scholar 

  • Trujillo, K.M., Yuan, S.S., Lee, E.Y., and Sung, P. (1998). Nuclease activities in a complex of human recombination and DNA repair factors Rad50, Mre11, and p95. J. Biol. Chem. 273:21447–21450.

    Article  PubMed  CAS  Google Scholar 

  • Tsurimoto, T., Fairman, M.P., and Stillman, B. (1989). Simian virus 40 DNA replication in vitro: identification of multiple stages of initiation. Mol. Cell Biol. 9:3839–3849.

    PubMed  CAS  Google Scholar 

  • Uziel, T., Lerenthal, Y., Moyal, L., Andegeko, Y., Mittelman, L., and Shiloh, Y. (2003). Requirement of the MRN complex for ATM activation by DNA damage. EMBO J. 22:5612–5621.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., and Qin, J. (2003). MSH2 and ATR form a signaling module and regulate two branches of the damage response to DNA methylation. Proc. Natl. Acad. Sci. USA. 100:15387–15392.

    Article  PubMed  CAS  Google Scholar 

  • Wang, Y., Cortez, D., Yazdi, P., Neff, N., Elledge, S.J., and Qin, J. (2000). BASC, a super complex of BRCA1-associated proteins involved in the recognition and repair of aberrant DNA structures. Genes Dev. 14:927–939.

    PubMed  CAS  Google Scholar 

  • Washburn, M.P., Wolters, D., and Yates, J.R., III (2001). Large-scale analysis of the yeast proteome by multidimensional protein identification technology. Nat. Biotechnol 19:242–247.

    Article  PubMed  CAS  Google Scholar 

  • Wolters, D.A., Washburn, M.P., and Yates, J.R., III (2001). An automated multidimensional protein identification technology for shotgun proteomics. Anal. Chem. 73:5683–5690.

    Article  PubMed  CAS  Google Scholar 

  • Wu, X., Ranganathan, V., Weisman, D.S., Heine, W.F., Ciccone, D.N., O’Neill, T.B., Crick, K.E., Pierce, K.A., Lane, W.S., Rathbun, G., Livingston, D.M., and Weaver, D.T. (2000). ATM phosphorylation of Nijmegen breakage syndrome protein is required in a DNA damage response. Nature 405:477–482.

    Article  PubMed  CAS  Google Scholar 

  • Xin, H., Yoon, H., Singh, S.B., Wong, J., and Qin, J. (2004). Components of a pathway maintaining histone modification and HP1 binding at the pericentric heterochromatin in mammalian cells. J. Biol. Chem. 279:9539–9546.

    Article  PubMed  CAS  Google Scholar 

  • Yates, J.R., III (1998). Database searching using mass spectrometry data. Electrophoresis 19:893–900.

    Article  PubMed  CAS  Google Scholar 

  • Yazdi, P.T., Wang, Y., Zhao, S., Patel, N., Lee, E.Y., and Qin, J. (2002). SMC1 is a downstream effector in the ATM/NBS1 branch of the human S-phase checkpoint. Genes Dev. 16: 571–582.

    Article  PubMed  CAS  Google Scholar 

  • Zhao, S., Weng, Y.C., Yuan, S.S., Lin, Y.T., Hsu, H.C., Lin, S.C., Gerbino, E., Song, M.H., Zdzienicka, M.Z., Gatti, R.A., Shay, J.W., Ziv, Y., Shiloh, Y., and Lee, E.Y. (2000). Functional link between ataxia-telangiectasia and Nijmegen breakage syndrome gene products. Nature 405:473–477.

    Article  PubMed  CAS  Google Scholar 

  • Zhu, X.D., Kuster, B., Mann, M., Petrini, J.H., and de Lange, T. (2000) Cell-cycle-regulated association of Rad50/Mre11/NBS1 with TRF2 and human telomeres. Nat. Genet. 25:347–352.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Wang, Y., Yazdi, P., Qin, J. (2005). The Use of Mass Spectrometry in Studying Protein-Protein Interaction. In: Waksman, G. (eds) Proteomics and Protein-Protein Interactions. Protein Reviews, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-24532-4_3

Download citation

Publish with us

Policies and ethics