Skip to main content

Transforming Growth Factor Beta and Breast Cancer

  • Chapter

Part of the book series: Cancer Treatment and Research ((CTAR,volume 126))

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hanahan, D. and Weinberg, R. A. The hallmarks of cancer. Cell, 100: 57–70, 2000.

    PubMed  CAS  Google Scholar 

  2. Hahn, W. C., Counter, C. M., Lundberg, A. S., Beijersbergen, R. L., Brooks, M. W., and Weinberg, R. A. Creation of human tumour cells with defined genetic elements. Nature, 400: 464–468, 1999.

    PubMed  CAS  Google Scholar 

  3. Siegel, P. M., Shu, W., Cardiff, R. D., Muller, W. J., and Massague, J. Transforming growth factor {beta} signaling impairs Neu-induced mammary tumorigenesis while promoting pulmonary metastasis. PNAS, 100: 8430, 2003.

    PubMed  CAS  Google Scholar 

  4. Massague, J. Tgf-beta signal transduction [Review]. Annual Review of Biochemistry, 67: 753–791, 1998.

    PubMed  CAS  Google Scholar 

  5. Derynck, R., Goeddel, D. V., Ullrich, A., Gutterman, J. U., Williams, R. D., Bringman, T. S., and Berger, W. H. Synthesis of messenger RNAs for transforming growth factors alpha and beta and the epidermal growth factor receptor by human tumors. Cancer Res., 47: 707–712, 1987.

    PubMed  CAS  Google Scholar 

  6. Dickson, R. B., Kasid, A., Huff, K. K., Bates, S. E., Knabbe, C., Bronzert, D., Gelmann, E. P., and Lippman, M. E. Activation of growth factor secretion in tumorigenic states of breast cancer induced by 17 beta-estradiol or v-Ha-ras oncogene. Proc.Natl.Acad.Sci.U.S.A, 84: 837–841, 1987.

    PubMed  CAS  Google Scholar 

  7. Lyons, R. M., Gentry, L. E., Purchio, A. F., and Moses, H. L. Mechanism of activation of latent recombinant transforming growth factor beta 1 by plasmin. J.Cell Biol., 110: 1361–1367, 1990.

    PubMed  CAS  Google Scholar 

  8. Sato, Y. and Rifkin, D. B. Inhibition of endothelial cell movement by pericytes and smooth muscle cells: activation of a latent transforming growth factor-beta 1-like molecule by plasmin during co-culture. J.Cell Biol., 109: 309–315, 1989.

    PubMed  CAS  Google Scholar 

  9. Crawford, S. E., Stellmach, V., Murphyullrich, J. E., Ribeiro, S. F., Lawler, J., Hynes, R. O., Boivin, G. P., and Bouck, N. Thrombospondin-1 is a major activator of tgf-beta-1 in vivo. Cell, 93: 1159–1170, 1998.

    PubMed  CAS  Google Scholar 

  10. Yu, Q. and Stamenkovic, I. Cell surface-localized matrix metalloproteinase-9 proteolytically activates TGF-beta and promotes tumor invasion and angiogenesis. Genes Dev., 14: 163–176, 2000.

    PubMed  Google Scholar 

  11. Stamenkovic, I. Matrix metalloproteinases in tumor invasion and metastasis. Semin.Cancer Biol., 10: 415–433, 2000.

    PubMed  CAS  Google Scholar 

  12. Stetler-Stevenson, W. G. and Yu, A. E. Proteases in invasion: matrix metalloproteinases. Semin.Cancer Biol., 11: 143–152, 2001.

    PubMed  CAS  Google Scholar 

  13. Aghdasi, B., Ye, K., Resnick, A., Huang, A., Ha, H. C., Guo, X., Dawson, T. M., Dawson, V. L., and Snyder, S. H. FKBP12, the 12-kDa FK506-binding protein, is a physiologic regulator of the cell cycle. Proc.Natl.Acad.Sci.U.S.A, 98: 2425–2430, 2001.

    PubMed  CAS  Google Scholar 

  14. Wang, T., Li, B. Y., Danielson, P. D., Shah, P. C., Rockwell, S., Lechleider, R. J., Martin, J., Manganaro, T., and Donahoe, P. K. The immunophilin FKBP12 functions as a common inhibitor of the TGF beta family type I receptors. Cell, 86: 435–444, 1996.

    PubMed  CAS  Google Scholar 

  15. Yao, D., Dore, J. J., Jr., and Leof, E. B. FKBP12 is a negative regulator of transforming growth factor-beta receptor internalization. J.Biol.Chem., 275: 13149–13154, 2000.

    PubMed  CAS  Google Scholar 

  16. Datta, P. K., Chytil, A., Gorska, A. E., and Moses, H. L. Identification of STRAP, a novel WD domain protein in transforming growth factor-beta signaling. J.Biol.Chem., 273: 34671–34674, 1998.

    PubMed  CAS  Google Scholar 

  17. Griswold-Prenner, I., Kamibayashi, C., Maruoka, E. M., Mumby, M. C., and Derynck, R. Physical and functional interactions between type I transforming growth factor beta receptors and Balpha, a WD-40 repeat subunit of phosphatase 2A. Mol.Cell Biol., 18: 6595–6604, 1998.

    PubMed  CAS  Google Scholar 

  18. Massague, J. How cells read TGF-beta signals. Nat.Rev.Mol.Cell Biol., 1: 169–178, 2000.

    PubMed  CAS  Google Scholar 

  19. Itoh, S., Itoh, F., Goumans, M. J., and ten Dijke, P. Signaling of transforming growth factor-beta family members through Smad proteins. Eur.J.Biochem., 267: 6954–6967, 2000.

    PubMed  CAS  Google Scholar 

  20. Derynck, R. and Zhang, Y. E. Smad-dependent and Smad-independent pathways in TGF-beta family signalling. Nature, 425: 577–584, 2003.

    PubMed  CAS  Google Scholar 

  21. Dunfield, L. D., Dwyer, E. J., and Nachtigal, M. W. TGF beta-induced Smad signaling remains intact in primary human ovarian cancer cells. Endocrinology, 143: 1174–1181, 2002.

    PubMed  CAS  Google Scholar 

  22. Ulloa, L., Doody, J., and Massague, J. Inhibition of transforming growth factor-beta/SMAD signalling by the interferon-gamma/STAT pathway. Nature, 397: 710–713, 1999.

    PubMed  CAS  Google Scholar 

  23. Bitzer, M., von Gersdorff, G., Liang, D., Dominguez-Rosales, A., Beg, A. A., Rojkind, M., and Bottinger, E. P. A mechanism of suppression of TGF-beta/SMAD signaling by NF-kappa B/RelA. Genes Dev., 14: 187–197, 2000.

    PubMed  CAS  Google Scholar 

  24. Kretzschmar, M., Doody, J., Timokhina, I., and Massague, J. A mechanism of repression of TGFbeta/ Smad signaling by oncogenic Ras. Genes Dev., 13: 804–816, 1999.

    PubMed  CAS  Google Scholar 

  25. Yu, L., Hebert, M. C., and Zhang, Y. E. TGF-beta receptor-activated p38 MAP kinase mediates Smad-independent TGF-beta responses. EMBO J, 21: 3749–3759, 2002.

    PubMed  CAS  Google Scholar 

  26. Edlund, S., Bu, S., Schuster, N., Aspenstrom, P., Heuchel, R., Heldin, N. E., ten Dijke, P., Heldin, C. H., and Landstrom, M. Transforming growth factor-beta1 (TGF-beta)-induced apoptosis of prostate cancer cells involves Smad7-dependent activation of p38 by TGF-beta-activated kinase 1 and mitogen-activated protein kinase kinase 3. Mol.Biol.Cell, 14: 529–544, 2003.

    PubMed  CAS  Google Scholar 

  27. Hannon, G. J. and Beach, D. p15INK4B is a potential effector of TGF-beta-induced cell cycle arrest. Nature, 371: 257–261, 1994.

    PubMed  CAS  Google Scholar 

  28. Reynisdottir, I., Polyak, K., Iavarone, A., and Massague, J. Kip/Cip and Ink4 Cdk inhibitors cooperate to induce cell cycle arrest in response to TGF-beta. Genes Dev., 9: 1831–1845, 1995.

    PubMed  CAS  Google Scholar 

  29. Datto, M. B., Li, Y., Panus, J. F., Howe, D. J., Xiong, Y., and Wang, X. F. Transforming growth factor beta induces the cyclin-dependent kinase inhibitor p21 through a p53-independent mechanism. Proc.Natl.Acad.Sci.U.S.A, 92: 5545–5549, 1995.

    PubMed  CAS  Google Scholar 

  30. Rotello, R. J., Lieberman, R. C., Purchio, A. F., and Gerschenson, L. E. Coordinated regulation of apoptosis and cell proliferation by transforming growth factor beta 1 in cultured uterine epithelial cells. Proc.Natl.Acad.Sci.U.S.A, 88: 3412–3415, 1991.

    PubMed  CAS  Google Scholar 

  31. Oberhammer, F. A., Pavelka, M., Sharma, S., Tiefenbacher, R., Purchio, A. F., Bursch, W., and Schulte-Hermann, R. Induction of apoptosis in cultured hepatocytes and in regressing liver by transforming growth factor beta 1. Proc.Natl.Acad.Sci.U.S.A, 89: 5408–5412, 1992.

    PubMed  CAS  Google Scholar 

  32. Chaouchi, N., Arvanitakis, L., Auffredou, M. T., Blanchard, D. A., Vazquez, A., and Sharma, S. Characterization of transforming growth factor-beta 1 induced apoptosis in normal human B cells and lymphoma B cell lines. Oncog., 11: 1615–1622, 1995.

    CAS  Google Scholar 

  33. Landstrom, M., Heldin, N. E., Bu, S., Hermansson, A., Itoh, S., ten Dijke, P., and Heldin, C. H. Smad7 mediates apoptosis induced by transforming growth factor beta in prostatic carcinoma cells. Curr.Biol., 10: 535–538, 2000.

    PubMed  CAS  Google Scholar 

  34. Larisch, S., Yi, Y., Lotan, R., Kerner, H., Eimerl, S., Tony, P. W., Gottfried, Y., Birkey, R. S., de Caestecker, M. P., Danielpour, D., Book-Melamed, N., Timberg, R., Duckett, C. S., Lechleider, R. J., Steller, H., Orly, J., Kim, S. J., and Roberts, A. B. A novel mitochondrial septin-like protein, ARTS, mediates apoptosis dependent on its P-loop motif. Nat.Cell Biol., 2: 915–921, 2000.

    PubMed  CAS  Google Scholar 

  35. Patil, S., Wildey, G. M., Brown, T. L., Choy, L., Derynck, R., and Howe, P. H. Smad7 is induced by CD40 and protects WEHI 231 B-lymphocytes from transforming growth factor-beta-induced growth inhibition and apoptosis. J.Biol.Chem., 275: 38363–38370, 2000.

    PubMed  CAS  Google Scholar 

  36. Perlman, R., Schiemann, W. P., Brooks, M. W., Lodish, H. F., and Weinberg, R. A. TGF-beta-induced apoptosis is mediated by the adapter protein Daxx that facilitates JNK activation. Nat.Cell Biol., 3: 708–714, 2001.

    PubMed  CAS  Google Scholar 

  37. Yanagisawa, K., Osada, H., Masuda, A., Kondo, M., Saito, T., Yatabe, Y., Takagi, K., Takahashi, T., and Takahashi, T. Induction of apoptosis by Smad3 and down-regulation of Smad3 expression in response to TGF-beta in human normal lung epithelial cells. Oncog., 17: 1743–1747, 1998.

    CAS  Google Scholar 

  38. Dai, J. L., Bansal, R. K., and Kern, S. E. G1 cell cycle arrest and apoptosis induction by nuclear Smad4/Dpc4: phenotypes reversed by a tumorigenic mutation. Proc.Natl.Acad.Sci.U.S.A, 96: 1427–1432, 1999.

    PubMed  CAS  Google Scholar 

  39. Silberstein, G. B. and Daniel, C. W. Reversible inhibition of mammary gland growth by transforming growth factor-beta. Science, 237: 291–293, 1987.

    PubMed  CAS  Google Scholar 

  40. Gomm, J. J., Smith, J., Ryall, G. K., Baillie, R., Turnbull, L., and Coombes, R. C. Localization of basic fibroblast growth factor and transforming growth factor beta 1 in the human mammary gland. Cancer Res., 51: 4685–4692, 1991.

    PubMed  CAS  Google Scholar 

  41. Lu, Y. J., Osin, P., Lakhani, S. R., Di Palma, S., Gusterson, B. A., and Shipley, J. M. Comparative genomic hybridization analysis of lobular carcinoma in situ and atypical lobular hyperplasia and potential roles for gains and losses of genetic material in breast neoplasia. Cancer Res., 58: 4721–4727, 1998.

    PubMed  CAS  Google Scholar 

  42. Chakravarthy, D., Green, A. R., Green, V. L., Kerin, M. J., and Speirs, V. Expression and secretion of TGF-beta isoforms and expression of TGF-beta-receptors I, II and III in normal and neoplastic human breast. Int.J.Oncol., 15: 187–194, 1999.

    PubMed  CAS  Google Scholar 

  43. Robinson, S. D., Silberstein, G. B., Roberts, A. B., Flanders, K. C., and Daniel, C. W. Regulated expression and growth inhibitory effects of transforming growth factor-beta isoforms in mouse mammary gland development. Development, 113: 867–878, 1991.

    PubMed  CAS  Google Scholar 

  44. Barcellos-Hoff, M. H., Derynck, R., Tsang, M. L., and Weatherbee, J. A. Transforming growth factor-beta activation in irradiated murine mammary gland. J.Clin.Invest, 93: 892–899, 1994.

    PubMed  CAS  Google Scholar 

  45. Ehrhart, E. J., Segarini, P., Tsang, M. L., Carroll, A. G., and Barcellos-Hoff, M. H. Latent transforming growth factor betal activation in situ: quantitative and functional evidence after low-dose gamma-irradiation. FASEB J., 11: 991–1002, 1997.

    PubMed  CAS  Google Scholar 

  46. Robinson, S. D., Roberts, A. B., and Daniel, C. W. TGF beta suppresses casein synthesis in mouse mammary explants and may play a role in controlling milk levels during pregnancy. J.Cell Biol., 120: 245–251, 1993.

    PubMed  CAS  Google Scholar 

  47. Bergstraesser, L., Sherer, S., Panos, R., and Weitzman, S. Stimulation and inhibition of human mammary epithelial cell duct morphogenesis in vitro. Proc.Assoc.Am.Physicians, 108: 140–154, 1996.

    PubMed  CAS  Google Scholar 

  48. Soriano, J. V., Orci, L., and Montesano, R. TGF-beta1 induces morphogenesis of branching cords by cloned mammary epithelial cells at subpicomolar concentrations. Biochem.Biophys.Res.Commun., 220: 879–885, 1996.

    PubMed  CAS  Google Scholar 

  49. Pierce, D. F., Jr., Gorska, A. E., Chytil, A., Meise, K. S., Page, D. L., Coffey, R. J., Jr., and Moses, H. L. Mammary tumor suppression by transforming growth factor beta 1 transgene expression. Proc.Natl.Acad.Sci.U.S.A, 92: 4254–4258, 1995.

    PubMed  CAS  Google Scholar 

  50. Bottinger, E. P., Jakubczak, J. L., Haines, D. C., Bagnall, K., and Wakefield, L. M. Transgenic mice overexpressing a dominant-negative mutant type II transforming growth factor beta receptor show enhanced tumorigenesis in the mammary gland and lung in response to the carcinogen 7,12-dimethylbenz-[a]-anthracene. Cancer Res., 57: 5564–5570, 1997.

    PubMed  CAS  Google Scholar 

  51. Fynan, T. M. and Reiss, M. Resistance to inhibition of cell growth by transforming growth factor-beta and its role in oncogenesis. Crit Rev.Oncog., 4: 493–540, 1993.

    PubMed  CAS  Google Scholar 

  52. Gobbi, H., Arteaga, C. L., Jensen, R. A., Simpson, J. F., Dupont, W. D., Olson, S. J., Schuyler, P. A., Plummer, W. D., Jr., and Page, D. L. Loss of expression of transforming growth factor beta type II receptor correlates with high tumour grade in human breast in-situ and invasive carcinomas. Histopathology, 36: 168–177, 2000.

    PubMed  CAS  Google Scholar 

  53. Wakefield, L. M., Yang, Y. A., and Dukhanina, O. Transforming growth factor-beta and breast cancer: Lessons learned from genetically altered mouse models. Breast Cancer Res., 2: 100–106, 2000.

    PubMed  CAS  Google Scholar 

  54. Gorsch, S. M., Memoli, V. A., Stukel, T. A., Gold, L. I., and Arrick, B. A. Immunohistochemical staining for transforming growth factor beta 1 associates with disease progression in human breast cancer. Cancer Res., 52: 6949–6952, 1992.

    PubMed  CAS  Google Scholar 

  55. Wakefield, L. M. and Roberts, A. B. TGF-beta signaling: positive and negative effects on tumorigenesis. Curr.Opin.Genet.Dev., 12: 22–29, 2002.

    PubMed  CAS  Google Scholar 

  56. Akhurst, R. J. and Derynck, R. TGF-beta signaling in cancer—a double-edged sword. Trends Cell Biol., 11: S44–S51, 2001.

    PubMed  CAS  Google Scholar 

  57. Sporn, M. B. and Roberts, A. B. TGF-beta: problems and prospects. Cell Regul., 1: 875–882, 1990.

    PubMed  CAS  Google Scholar 

  58. Tang, B., Bottinger, E. P., Jakowlew, S. B., Bagnall, K. M., Mariano, J., Anver, M. R., Letterio, J. J., and Wakefield, L. M. Transforming growth factor-beta1 is a new form of tumor suppressor with true haploid insufficiency. Nat.Med., 4: 802–807, 1998.

    PubMed  CAS  Google Scholar 

  59. Koli, K. M. and Arteaga, C. L. Processing of the transforming growth factor beta type I and II receptors. Biosynthesis and ligand-induced regulation. J.Biol.Chem., 272: 6423–6427, 1997.

    PubMed  CAS  Google Scholar 

  60. Chen, T., Carter, D., Garrigue-Antar, L., and Reiss, M. Transforming growth factor beta type I receptor kinase mutant associated with metastatic breast cancer. Cancer Res., 58: 4805–4810, 1998.

    PubMed  CAS  Google Scholar 

  61. Anbazhagan, R., Bornman, D. M., Johnston, J. C., Westra, W. H., and Gabrielson, E. The S387Y mutation of the transforming growth factor-beta receptor type I gene is uncommon in metastases of breast cancer and other common types of adenocarcinoma. Cancer Res, 59: 3363–3364, 1999.

    PubMed  CAS  Google Scholar 

  62. Schutte, M., Hruban, R. H., Hedrick, L., Cho, K. R., Nadasdy, G. M., Weinstein, C. L., Bova, G. S., Isaacs, W. B., Cairns, P., Nawroz, H., Sidransky, D., Casero, R. A., Jr., Meltzer, P. S., Hahn, S. A., and Kern, S. E. DPC4 gene in various tumor types. Cancer Res., 56: 2527–2530, 1996.

    PubMed  CAS  Google Scholar 

  63. Verbeek, B. S., Adriaansen-Slot, S. S., Rijksen, G., and Vroom, T. M. Grb2 overexpression in nuclei and cytoplasm of human breast cells: a histochemical and biochemical study of normal and neoplastic mammary tissue specimens. J.Pathol., 183: 195–203, 1997.

    PubMed  CAS  Google Scholar 

  64. Pasche, B., Luo, Y., Rao, P. H., Nimer, S. D., Dmitrovsky, E., Caron, P., Luzzatto, L., Offit, K., Cordon-Cardo, C., Renault, B., Satagopan, J. M., Murty, V. V., and Massague, J. Type I transforming growth factor beta receptor maps to 9q22 and exhibits a polymorphism and a rare variant within a polyalanine tract. Cancer Res., 58: 2727–2732, 1998.

    PubMed  CAS  Google Scholar 

  65. Pasche, B., Kolachana, P., Nafa, K., Satagopan, J., Chen, Y. G., Lo, R. S., Brener, D., Yang, D., Kirstein, L., Oddoux, C., Ostrer, H., Vineis, P., Varesco, L., Jhanwar, S., Luzzatto, L., Massague, J., and Offit, K. T beta R-I(6A) is a candidate tumor susceptibility allele. Cancer Res, 59: 5678–5682, 1999.

    PubMed  CAS  Google Scholar 

  66. Chen, T., de Vries, E. G., Hollema, H., Yegen, H. A., Vellucci, V. F., Strickler, H. D., Hildesheim, A., and Reiss, M. Structural alterations of transforming growth factor-beta receptor genes in human cervical carcinoma. Int.J Cancer, 82: 43–51, 1999.

    PubMed  CAS  Google Scholar 

  67. Kaklamani, V. G., Hou, N., Bian, Y., Reich, J., Offit, K., Michel, L. S., Rubinstein, W. S., Rademaker, A., and Pasche, B. TGFBR1*6A and Cancer Risk: A Meta-Analysis of Seven Case-Control Studies. J Clin Oncol, 21: 3236–3243, 2003.

    PubMed  CAS  Google Scholar 

  68. Pasche, B., Kaklamani, V. G., Hou, N., Young, T., Rademaker, A., Peterlongo, P., Ellis, N., Offit, K., Caldes, T., Reiss, M., and Zheng, T. TGFBR1*6A and Cancer: A Meta-Analysis of 12 Case-Control Studies. J Clin Oncol, 22: 756–758, 2004.

    PubMed  Google Scholar 

  69. Dunning, A. M., Ellis, P. D., McBride, S., Kirschenlohr, H. L., Healey, C. S., Kemp, P. R., Luben, R. N., Chang-Claude, J., Mannermaa, A., Kataja, V., Pharoah, P. D. P., Easton, D. F., Ponder, B. A. J., and Metcalfe, J. C. A Transforming Growth Factor{beta} 1 Signal Peptide Variant Increases Secretion in Vitro and Is Associated with Increased Incidence of Invasive Breast Cancer. Cancer Res, 63: 2610–2615, 2003.

    PubMed  CAS  Google Scholar 

  70. Ziv, E., Cauley, J., Morin, P. A., Saiz, R., and Browner, W. S. Association between the T29→C polymorphism in the transforming growth factor betal gene and breast cancer among elderly white women: The Study of Osteoporotic Fractures. JAMA, 285: 2859–2863, 2001.

    PubMed  CAS  Google Scholar 

  71. Hishida, A., Iwata, H., Hamajima, N., Matsuo, K., Mizutani, M., Iwase, T., Miura, S., Emi, N., Hirose, K., and Tajima, K. Transforming growth factor B1 T29C polymorphism and breast cancer risk in Japanese women. Breast Cancer, 10: 63–69, 2003.

    PubMed  Google Scholar 

  72. Marchand, L. L., Haiman, C. A., van den Berg, D., Wilkens, L. R., Kolonel, L. N., and Henderson, B. E. T29C Polymorphism in the Transforming Growth Factor {beta} 1 Gene and Postmenopausal Breast Cancer Risk: The Multiethnic Cohort Study. Cancer Epidemiol Biomarkers Prev, 13: 412–415, 2004.

    PubMed  Google Scholar 

  73. Shu, X. O., Gao, Y. T., Cai, Q., Pierce, L., Cai, H., Ruan, Z. X., Yang, G., Jin, F., and Zheng, W. Genetic polymorphisms in the TGF-beta 1 gene and breast cancer survival: a report from the Shanghai Breast Cancer Study. Cancer Res., 64: 836–839, 2004.

    PubMed  CAS  Google Scholar 

  74. Sheen-Chen, S. M., Chen, H. S., Sheen, C. W., Eng, H. L., and Chen, W. J. Serum levels of transforming growth factor betal in patients with breast cancer. Arch.Surg., 136: 937–940, 2001.

    PubMed  CAS  Google Scholar 

  75. Ivanovic, V., Todorovic-Rakovic, N., Demajo, M., Neskovic-Konstantinovic, Z., Subota, V., Ivanisevic-Milovanovic, O., and Nikolic-Vukosavljevic, D. Elevated plasma levels of transforming growth factor-beta 1 (TGF-beta 1) in patients with advanced breast cancer: association with disease progression. Eur.J.Cancer, 39: 454–461, 2003.

    PubMed  CAS  Google Scholar 

  76. Lauritsen, K. J., List, H. J., Reiter, R., Wellstein, A., and Riegel, A. T. A role for TGF-beta in estrogen and retinoid mediated regulation of the nuclear receptor coactivator AIB1 in MCF-7 breast cancer cells. Oncogene, 21: 7147–7155, 2002.

    PubMed  CAS  Google Scholar 

  77. Brandt, S., Kopp, A., Grage, B., and Knabbe, C. Effects of tamoxifen on transcriptional level of transforming growth factor beta (TGF-beta) isoforms 1 and 2 in tumor tissue during primary treatment of patients with breast cancer. Anticancer Res., 23: 223–229, 2003.

    PubMed  CAS  Google Scholar 

  78. Tong, G. M., Rajah, T. T., Zang, X. P., and Pento, J. T. The effect of antiestrogens on TGF-beta-mediated chemotaxis of human breast cancer cells. Anticancer Res., 22: 103–106, 2002.

    PubMed  CAS  Google Scholar 

  79. Wu, L., Wu, Y., Gathings, B., Wan, M., Li, X., Grizzle, W., Liu, Z., Lu, C., Mao, Z., and Cao, X. Smad4 as a transcription corepressor for estrogen receptor alpha. J.Biol.Chem., 278: 15192–15200, 2003.

    PubMed  CAS  Google Scholar 

  80. Fumagalli, S., Doneda, L., Nomura, N., and Larizza, L. Expression of the c-ski proto-oncogene in human melanoma cell lines. Melanoma Res., 3: 23–27, 1993.

    PubMed  CAS  Google Scholar 

  81. Luo, K., Stroschein, S. L., Wang, W., Chen, D., Martens, E., Zhou, S., and Zhou, Q. The Ski oncoprotein interacts with the Smad proteins to repress TGFbeta signaling. Genes Dev., 13: 2196–2206, 1999.

    PubMed  CAS  Google Scholar 

  82. He, J., Tegen, S. B., Krawitz, A. R., Martin, G. S., and Luo, K. The Transforming Activity of Ski and SnoN Is Dependent on Their Ability to Repress the Activity of Smad Proteins. Journal of Biological Chemistry, 278: 30540–30547, 2003.

    PubMed  CAS  Google Scholar 

  83. Zhang, F., Lundin, M., Ristimaki, A., Heikkila, P., Lundin, J., Isola, J., Joensuu, H., and Laiho, M. Ski-related novel protein N (SnoN), a negative controller of transforming growth factor-beta signaling, is a prognostic marker in estrogen receptor-positive breast carcinomas. Cancer Res., 63: 5005–5010, 2003.

    PubMed  CAS  Google Scholar 

  84. Chen, T., Triplett, J., Dehner, B., Hurst, B., Colligan, B., Pemberton, J., Graff, J. R., and Carter, J. H. Transforming growth factor-beta receptor type I gene is frequently mutated in ovarian carcinomas. Cancer Res, 61: 4679–4682, 2001.

    PubMed  CAS  Google Scholar 

  85. Hahm, K. B., Cho, K., Lee, C., Im, Y. H., Chang, J., Choi, S. G., Sorensen, P. H., Thiele, C. J., and Kim, S. J. Repression of the gene encoding the TGF-beta type II receptor is a major target of the EWS-FLI1 oncoprotein. Nat.Genet., 23: 222–227, 1999.

    PubMed  CAS  Google Scholar 

  86. Benson, J. R. Role of transforming growth factor beta in breast carcinogenesis. Lancet Oncol., 5: 229–239, 2004.

    PubMed  CAS  Google Scholar 

  87. Laiho, M., Decaprio, J. A., Ludlow, J. W., Livingston, D. M., and Massague, J. Growth inhibition by TGF-beta linked to suppression of retinoblastoma protein phosphorylation. Cell, 62: 175–185, 1990.

    PubMed  CAS  Google Scholar 

  88. Howe, P. H., Draetta, G., and Leof, E. B. Transforming growth factor beta 1 inhibition of p34cdc2 phosphorylation and histone H1 kinase activity is associated with G1/S-phase growth arrest. Mol.Cell Biol., 11: 1185–1194, 1991.

    PubMed  CAS  Google Scholar 

  89. Alexandrow, M. G. and Moses, H. L. Transforming growth factor beta and cell cycle regulation. Cancer Res., 55: 1452–1457, 1995.

    PubMed  CAS  Google Scholar 

  90. Coffey, R. J., Jr., Bascom, C. C., Sipes, N. J., Graves-Deal, R., Weissman, B. E., and Moses, H. L. Selective inhibition of growth-related gene expression in murine keratinocytes by transforming growth factor beta. Mol.Cell Biol., 8: 3088–3093, 1988.

    PubMed  CAS  Google Scholar 

  91. Pietenpol, J. A., Stein, R. W., Moran, E., Yaciuk, P., Schlegel, R., Lyons, R. M., Pittelkow, M. R., Munger, K., Howley, P. M., and Moses, H. L. TGF-beta 1 inhibition of c-myc transcription and growth in keratinocytes is abrogated by viral transforming proteins with pRB binding domains. Cell, 61: 777–785, 1990.

    PubMed  CAS  Google Scholar 

  92. Alexandrow, M. G., Kawabata, M., Aakre, M., and Moses, H. L. Overexpression of the c-Myc oncoprotein blocks the growth-inhibitory response but is required for the mitogenic effects of transforming growth factor beta 1. Proc.Natl.Acad.Sci.U.S.A, 92: 3239–3243, 1995.

    PubMed  CAS  Google Scholar 

  93. Slingerland, J. M., Hengst, L., Pan, C. H., Alexander, D., Stampfer, M. R., and Reed, S. I. A novel inhibitor of cyclin-Cdk activity detected in transforming growth factor beta-arrested epithelial cells. Mol.Cell Biol., 14: 3683–3694, 1994.

    PubMed  CAS  Google Scholar 

  94. Geng, Y. and Weinberg, R. A. Transforming growth factor beta effects on expression of G1 cyclins and cyclin-dependent protein kinases. Proc.Natl.Acad.Sci.U.S.A, 90: 10315–10319, 1993.

    PubMed  CAS  Google Scholar 

  95. Koff, A., Ohtsuki, M., Polyak, K., Roberts, J. M., and Massague, J. Negative regulation of G1 in mammalian cells: inhibition of cyclin E-dependent kinase by TGF-beta. Science, 260: 536–539, 1993.

    PubMed  CAS  Google Scholar 

  96. Lammie, G. A., Fantl, V., Smith, R., Schuuring, E., Brookes, S., Michalides, R., Dickson, C., Arnold, A., and Peters, G. D11S287, a putative oncogene on chromosome 11q13, is amplified and expressed in squamous cell and mammary carcinomas and linked to BCL-1. Oncogene, 6: 439–444, 1991.

    PubMed  CAS  Google Scholar 

  97. Buckley, M. F., Sweeney, K. J., Hamilton, J. A., Sini, R. L., Manning, D. L., Nicholson, R. I., deFazio, A., Watts, C. K., Musgrove, E. A., and Sutherland, R. L. Expression and amplification of cyclin genes in human breast cancer. Oncogene, 8: 2127–2133, 1993.

    PubMed  CAS  Google Scholar 

  98. An, H. X., Beckmann, M. W., Reifenberger, G., Bender, H. G., and Niederacher, D. Gene amplification and overexpression of CDK4 in sporadic breast carcinomas is associated with high tumor cell proliferation. Am.J.Pathol., 154: 113–118, 1999.

    PubMed  CAS  Google Scholar 

  99. Jansen-Durr, P., Meichle, A., Steiner, P., Pagano, M., Finke, K., Botz, J., Wessbecher, J., Draetta, G., and Eilers, M. Differential modulation of cyclin gene expression by MYC. Proc.Natl.Acad.Sci.U.S.A, 90: 3685–3689, 1993.

    PubMed  CAS  Google Scholar 

  100. Shibuya, H., Yoneyama, M., Ninomiya-Tsuji, J., Matsumoto, K., and Taniguchi, T. IL-2 and EGF receptors stimulate the hematopoietic cell cycle via different signaling pathways: demonstration of a novel role for c-myc. Cell, 70: 57–67, 1992.

    PubMed  CAS  Google Scholar 

  101. Aktas, H., Cai, H., and Cooper, G. M. Ras links growth factor signaling to the cell cycle machinery via regulation of cyclin D1 and the Cdk inhibitor p27KIP1. Mol.Cell Biol., 17: 3850–3857, 1997.

    PubMed  CAS  Google Scholar 

  102. Cheng, M., Sexl, V., Sherr, C. J., and Roussel, M. F. Assembly of cyclin D-dependent kinase and titration of p27Kip1 regulated by mitogen-activated protein kinase kinase (MEK1). Proc.Natl.Acad.Sci.U.S.A, 95: 1091–1096, 1998.

    PubMed  CAS  Google Scholar 

  103. Diehl, J. A., Cheng, M., Roussel, M. F., and Sherr, C. J. Glycogen synthase kinase-3beta regulates cyclin D1 proteolysis and subcellular localization. Genes Dev., 12: 3499–3511, 1998.

    PubMed  CAS  Google Scholar 

  104. Derynck, R., Akhurst, R. J., and Balmain, A. TGF-beta signaling in tumor suppression and cancer progression. Nat.Genet., 29: 117–129, 2001.

    PubMed  CAS  Google Scholar 

  105. Oft, M., Akhurst, R. J., and Balmain, A. Metastasis is driven by sequential elevation of H-ras and Smad2 levels. Nat.Cell Biol., 4: 487–494, 2002.

    PubMed  CAS  Google Scholar 

  106. Portella, G., Cumming, S. A., Liddell, J., Cui, W., Ireland, H., Akhurst, R. J., and Balmain, A. Transforming growth factor beta is essential for spindle cell conversion of mouse skin carcinoma in vivo: implications for tumor invasion. Cell Growth Differ., 9: 393–404, 1998.

    PubMed  CAS  Google Scholar 

  107. Cui, W., Fowlis, D. J., Bryson, S., Duffie, E., Ireland, H., Balmain, A., and Akhurst, R. J. TGFbetal inhibits the formation of benign skin tumors, but enhances progression to invasive spindle carcinomas in transgenic mice. Cell, 86: 531–542, 1996.

    PubMed  CAS  Google Scholar 

  108. Yin, J. J., Selander, K., Chirgwin, J. M., Dallas, M., Grubbs, B. G., Wieser, R., Massague, J., Mundy, G. R., and Guise, T. A. TGF-beta signaling blockade inhibits PTHrP secretion by breast cancer cells and bone metastases development. Journal of Clinical Investigation, 103: 197–206, 1999.

    PubMed  CAS  Google Scholar 

  109. Andreasen, P. A., Kjoller, L., Christensen, L., and Duffy, M. J. The urokinase-type plasminogen activator system in cancer metastasis: a review. Int.J.Cancer, 72: 1–22, 1997.

    PubMed  CAS  Google Scholar 

  110. Ueki, N., Nakazato, M., Ohkawa, T., Ikeda, T., Amuro, Y., Hada, T., and Higashino, K. Excessive production of transforming growth-factor beta 1 can play an important role in the development of tumorigenesis by its action for angiogenesis: validity of neutralizing antibodies to block tumor growth. Biochimica et Biophysica Acta, 1137: 189–196, 1992.

    PubMed  CAS  Google Scholar 

  111. Schwarte-Waldhoff, I., Volpert, O. V., Bouck, N. P., Sipos, B., Hahn, S. A., Klein-Scory, S., Luttges, J., Kloppel, G., Graeven, U., Eilert-Micus, C., Hintelmann, A., and Schmiegel, W. Smad4/DPC4-mediated tumor suppression through suppression of angiogenesis. Proc.Natl.Acad.Sci.U.S.A, 97: 9624–9629, 2000.

    PubMed  CAS  Google Scholar 

  112. de Jong, J. S., van Diest, P. J., van, d., V, and Baak, J. P. Expression of growth factors, growth-inhibiting factors, and their receptors in invasive breast cancer. II: Correlations with proliferation and angiogenesis. J.Pathol., 184: 53–57, 1998.

    PubMed  Google Scholar 

  113. Ito, N., Kawata, S., Tamura, S., Shirai, Y., Kiso, S., Tsushima, H., and Matsuzawa, Y. Positive correlation of plasma transforming growth factor-beta 1 levels with tumor vascularity in hepatocellular carcinoma. Cancer Lett., 89: 45–48, 1995.

    PubMed  CAS  Google Scholar 

  114. Roberts, A. B., Sporn, M. B., Assoian, R. K., Smith, J. M., Roche, N. S., Wakefield, L. M., Heine, U. I., Liotta, L. A., Falanga, V., Kehrl, J. H., and. Transforming growth factor type beta: rapid induction of fibrosis and angiogenesis in vivo and stimulation of collagen formation in vitro. Proc.Natl.Acad.Sci.U.S.A, 83: 4167–4171, 1986.

    PubMed  CAS  Google Scholar 

  115. Sunderkotter, C., Goebeler, M., Schulze-Osthoff, K., Bhardwaj, R., and Sorg, C. Macrophage-derived angiogenesis factors. Pharmacol.Ther., 51: 195–216, 1991.

    PubMed  CAS  Google Scholar 

  116. Yang, E. Y. and Moses, H. L. Transforming growth factor beta 1-induced changes in cell migration, proliferation, and angiogenesis in the chicken chorioallantoic membrane. J.Cell Biol., 111: 731–741, 1990.

    PubMed  CAS  Google Scholar 

  117. Ashcroft, G. S. Bidirectional regulation of macrophage function by TGF-beta. Microbes.Infect., 1: 1275–1282, 1999.

    PubMed  CAS  Google Scholar 

  118. Edwards, D. R., Murphy, G., Reynolds, J. J., Whitham, S. E., Docherty, A. J., Angel, P., and Heath, J. K. Transforming growth factor beta modulates the expression of collagenase and metalloproteinase inhibitor. EMBO J., 6: 1899–1904, 1987.

    PubMed  CAS  Google Scholar 

  119. Kordula, T., Guttgemann, I., Rose-John, S., Roeb, E., Osthues, A., Tschesche, H., Koj, A., Heinrich, P. C., and Graeve, L. Synthesis of tissue inhibitor of metalloproteinase-1 (TIMP-1) in human hepatoma cells (HepG2). Up-regulation by interleukin-6 and transforming growth factor beta 1. FEBS Lett., 313: 143–147, 1992.

    PubMed  CAS  Google Scholar 

  120. Shimizu, S., Nishikawa, Y., Kuroda, K., Takagi, S., Kozaki, K., Hyuga, S., Saga, S., and Matsuyama, M. Involvement of transforming growth factor betal in autocrine enhancement of gelatinase B secretion by murine metastatic colon carcinoma cells. Cancer Res., 56: 3366–3370, 1996.

    PubMed  CAS  Google Scholar 

  121. Sehgal, I. and Thompson, T. C. Novel regulation of type IV collagenase (matrix metalloproteinase-9 and-2) activities by transforming growth factor-beta1 in human prostate cancer cell lines. Mol.Biol.Cell, 10: 407–416, 1999.

    PubMed  CAS  Google Scholar 

  122. Duivenvoorden, W. C., Hirte, H. W., and Singh, G. Transforming growth factor betal acts as an inducer of matrix metalloproteinase expression and activity in human bone-metastasizing cancer cells. Clin.Exp.Metastasis, 17: 27–34, 1999.

    PubMed  CAS  Google Scholar 

  123. Hagedorn, H. G., Bachmeier, B. E., and Nerlich, A. G. Synthesis and degradation of basement membranes and extracellular matrix and their regulation by TGF-beta in invasive carcinomas (Review). Int.J.Oncol., 18: 669–681, 2001.

    PubMed  CAS  Google Scholar 

  124. Kalembeyi, I., Inada, H., Nishiura, R., Imanaka-Yoshida, K., Sakakura, T., and Yoshida, T. Tenascin-C upregulates matrix metalloproteinase-9 in breast cancer cells: direct and synergistic effects with transforming growth factor betal. Int.J.Cancer, 105: 53–60, 2003.

    PubMed  CAS  Google Scholar 

  125. Letamendia, A., Lastres, P., Botella, L. M., Raab, U., Langa, C., Velasco, B., Attisano, L., and Bemabeu, C. Role of endoglin in cellular responses to transforming growth factor-beta. A comparative study with betaglycan. J Biol Chem, 273: 33011–9, 1998.

    PubMed  CAS  Google Scholar 

  126. Barbara, N. P., Wrana, J. L., and Letarte, M. Endoglin is an accessory protein that interacts with the signaling receptor complex of multiple members of the transforming growth factor-beta superfamily. J Biol Chem, 274: 584–94, 1999.

    PubMed  CAS  Google Scholar 

  127. Li, C., Hampson, I. N., Hampson, L., Kumar, P., Bernabeu, C., and Kumar, S. CD105 antagonizes the inhibitory signaling of transforming growth factor betal on human vascular endothelial cells. FASEB J, 14: 55–64, 2000.

    PubMed  CAS  Google Scholar 

  128. Lastres, P., Letamendia, A., Zhang, H., Rius, C., Almendro, N., Raab, U., Lopez, L. A., Langa, C., Fabra, A., Letarte, M., and Bemabeu, C. Endoglin modulates cellular responses to TGF-beta 1. J Cell Biol, 133: 1109–21, 1996.

    PubMed  CAS  Google Scholar 

  129. Seon, B. K., Matsuno, F., Haruta, Y., Kondo, M., and Barcos, M. Long-lasting complete inhibition of human solid tumors in SCID mice by targeting endothelial cells of tumor vasculature with antihuman endoglin immunotoxin. Clin Cancer Res, 3: 1031–44, 1997.

    PubMed  CAS  Google Scholar 

  130. Matsuno, F., Haruta, Y., Kondo, M., Tsai, H., Barcos, M., and Seon, B. K. Induction of lasting complete regression of preformed distinct solid tumors by targeting the tumor vasculature using two new anti-endoglin monoclonal antibodies. Clin Cancer Res, 5: 371–82, 1999.

    PubMed  CAS  Google Scholar 

  131. Tabata, M., Kondo, M., Haruta, Y., and Seon, B. K. Antiangiogenic radioimmunotherapy of human solid tumors in SCID mice using (125)I-labeled anti-endoglin monoclonal antibodies. Int J Cancer, 82: 737–42, 1999.

    PubMed  CAS  Google Scholar 

  132. Dalal, B. I., Keown, P. A., and Greenberg, A. H. Immunocytochemical localization of secreted transforming growth factor-beta 1 to the advancing edges of primary tumors and to lymph node metastases of human mammary carcinoma. Am.J.Pathol., 143: 381–389, 1993.

    PubMed  CAS  Google Scholar 

  133. Kakonen, S. M., Selander, K. S., Chirgwin, J. M., Yin, J. J., Bums, S., Rankin, W. A., Grubbs, B. G., Dallas, M., Cui, Y., and Guise, T. A. Transforming growth factor-beta stimulates parathyroid hormone-related protein and osteolytic metastases via Smad and mitogen-activated protein kinase signaling pathways. J.Biol.Chem., 277: 24571–24578, 2002.

    PubMed  CAS  Google Scholar 

  134. Reinholz, M. M., Iturria, S. J., Ingle, J. N., and Roche, P. C. Differential gene expression of TGF-beta family members and osteopontin in breast tumor tissue: analysis by real-time quantitative PCR. Breast Cancer Res.Treat., 74: 255–269, 2002.

    PubMed  CAS  Google Scholar 

  135. Oft, M., Heider, K. H., and Beug, H. Tgf-beta signaling is necessary for carcinoma cell invasiveness and metastasis. Current Biology, 8: 1243–1252, 1998.

    PubMed  CAS  Google Scholar 

  136. Oft, M., Peli, J., Rudaz, C., Schwarz, H., Beug, H., and Reichmann, E. Tgf-beta-1 and ha-ras collaborate in modulating the phenotypic plasticity and invasiveness of epithelial tumor cells. Genes Dev, 10: 2462–2477, 1996.

    PubMed  CAS  Google Scholar 

  137. Miettinen, P. J., Ebner, R., Lopez, A. R., and Derynck, R. Tgf-beta induced transdifferentiation of mammary epithelial cells to mesenchymal cells: involvement of type i receptors. Journal of Cell Biology, 127: Pt 2):2021–36, 1994.

    PubMed  CAS  Google Scholar 

  138. Bhowmick, N. A., Chytil, A., Plieth, D., Gorska, A. E., Dumont, N., Shappell, S., Washington, M. K., Neilson, E. G., and Moses, H. L. TGF-{beta} Signaling in Fibroblasts Modulates the Oncogenic Potential of Adjacent Epithelia. Science, 303: 848–851, 2004.

    PubMed  CAS  Google Scholar 

  139. Fortunel, N., Hatzfeld, J., Kisselev, S., Monier, M. N., Ducos, K., Cardoso, A., Batard, P., and Hatzfeld, A. Release from quiescence of primitive human hematopoietic stem/progenitor cells by blocking their cell-surface TGF-beta type II receptor in a short-term in vitro assay. Stem Cells, 18: 102–111, 2000.

    PubMed  CAS  Google Scholar 

  140. Fortunel, N. O., Hatzfeld, A., and Hatzfeld, J. A. Transforming growth factor-beta: pleiotropic role in the regulation of hematopoiesis. Blood, 96: 2022–2036, 2000.

    PubMed  CAS  Google Scholar 

  141. Keller, J. R., McNiece, I. K., Sill, K. T., Ellingsworth, L. R., Quesenberry, P. J., Sing, G. K., and Ruscetti, F. W. Transforming growth factor beta directly regulates primitive murine hematopoietic cell proliferation. Blood, 75: 596–602, 1990.

    PubMed  CAS  Google Scholar 

  142. Soma, T., Yu, J. M., and Dunbar, C. E. Maintenance of murine long-term repopulating stem cells in ex vivo culture is affected by modulation of transforming growth factor-beta but not macrophage inflammatory protein-1 alpha activities. Blood, 87: 4561–4567, 1996.

    PubMed  CAS  Google Scholar 

  143. Keller, J. R., Jacobsen, S. E., Sill, K. T., Ellingsworth, L. R., and Ruscetti, F. W. Stimulation of granulopoiesis by transforming growth factor beta: synergy with granulocyte/macrophage-colony-stimulating factor. Proc.Natl.Acad.Sci.U.S.A, 88: 7190–7194, 1991.

    PubMed  CAS  Google Scholar 

  144. Jacobsen, S. E., Ruscetti, F. W., Dubois, C. M., Lee, J., Boone, T. C., and Keller, J. R. Transforming growth factor-beta trans-modulates the expression of colony stimulating factor receptors on murine hematopoietic progenitor cell lines. Blood, 77: 1706–1716, 1991.

    PubMed  CAS  Google Scholar 

  145. Hatzfeld, J., Li, M. L., Brown, E. L., Sookdeo, H., Levesque, J. P., O'Toole, T., Gurney, C., Clark, S. C., and Hatzfeld, A. Release of early human hematopoietic progenitors from quiescence by antisense transforming growth factor beta 1 or Rb oligonucleotides. J.Exp.Med., 174: 925–929, 1991.

    PubMed  CAS  Google Scholar 

  146. Batard, P., Monier, M. N., Fortunel, N., Ducos, K., Sansilvestri-Morel, P., Phan, T., Hatzfeld, A., and Hatzfeld, J. A. TGF-(beta)1 maintains hematopoietic immaturity by a reversible negative control of cell cycle and induces CD34 antigen up-modulation. J.Cell Sci., 113 (Pt 3): 383–390, 2000.

    PubMed  CAS  Google Scholar 

  147. Marone, M., Scambia, G., Bonanno, G., Rutella, S., de Ritis, D., Guidi, F., Leone, G., and Pierelli, L. Transforming growth factor-beta1 transcriptionally activates CD34 and prevents induced differentiation of TF-1 cells in the absence of any cell-cycle effects. Leukemia, 16: 94–105, 2002.

    PubMed  CAS  Google Scholar 

  148. Pierelli, L., Marone, M., Bonanno, G., Mozzetti, S., Rutella, S., Morosetti, R., Rumi, C., Mancuso, S., Leone, G., and Scambia, G. Modulation of bcl-2 and p27 in human primitive proliferating hematopoietic progenitors by autocrine TGF-beta1 is a cell cycle-independent effect and influences their hematopoietic potential. Blood, 95: 3001–3009, 2000.

    PubMed  CAS  Google Scholar 

  149. Knaus, P. I., Lindemann, D., DeCoteau, J. F., Perlman, R., Yankelev, H., Hille, M., Kadin, M. E., and Lodish, H. F. A dominant inhibitory mutant of the type ii transforming growth factor beta receptor in the malignant progression of a cutaneous t-cell lymphoma. Molecular & Cellular Biology, 16: 3480–3489, 1996.

    CAS  Google Scholar 

  150. Schiemann, W. P., Pfeifer, W. M., Levi, E., Kadin, M. E., and Lodish, H. F. A deletion in the gene for transforming growth factor beta type I receptor abolishes growth regulation by transforming growth factor beta in a cutaneous T-cell lymphoma. Blood, 94: 2854–2861, 1999.

    PubMed  CAS  Google Scholar 

  151. Bouchard, C., Fridman, W. H., and Sautes, C. Mechanism of inhibition of lipopolysaccharide-stimulated mouse B-cell responses by transforming growth factor-beta 1. Immunol.Lett., 40: 105–110, 1994.

    PubMed  CAS  Google Scholar 

  152. Kehrl, J. H., Thevenin, C., Rieckmann, P., and Fauci, A. S. Transforming growth factor-beta suppresses human B lymphocyte Ig production by inhibiting synthesis and the switch from the membrane form to the secreted form of Ig mRNA. J.Immunol., 146: 4016–4023, 1991.

    PubMed  CAS  Google Scholar 

  153. Kiessling, R., Klein, E., and Wigzell, H. &quote;Natural&quote; killer cells in the mouse. I. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Specificity and distribution according to genotype. Eur.J.Immunol., 5: 112–117, 1975.

    PubMed  CAS  Google Scholar 

  154. Kiessling, R., Klein, E., Pross, H., and Wigzell, H. &quote;Natural&quote; killer cells in the mouse. II. Cytotoxic cells with specificity for mouse Moloney leukemia cells. Characteristics of the killer cell. Eur.J.Immunol., 5: 117–121, 1975.

    PubMed  CAS  Google Scholar 

  155. Perussia, B. Lymphokine-activated killer cells, natural killer cells and cytokines. Curr.Opin.Immunol., 3: 49–55, 1991.

    PubMed  CAS  Google Scholar 

  156. Karre, K., Ljunggren, H. G., Piontek, G., and Kiessling, R. Selective rejection of H-2-deficient lymphoma variants suggests alternative immune defence strategy. Nature, 319: 675–678, 1986.

    PubMed  CAS  Google Scholar 

  157. Bellone, G., Aste-Amezaga, M., Trinchieri, G., and Rodeck, U. Regulation of NK cell functions by TGF-beta 1. J.Immunol., 155: 1066–1073, 1995.

    PubMed  CAS  Google Scholar 

  158. Pierson, B. A., Gupta, K., Hu, W. S., and Miller, J. S. Human natural killer cell expansion is regulated by thrombospondin-mediated activation of transforming growth factor-beta 1 and independent accessory cell-derived contact and soluble factors. Blood, 87: 180–189, 1996.

    PubMed  CAS  Google Scholar 

  159. Rook, A. H., Kehrl, J. H., Wakefield, L. M., Roberts, A. B., Sporn, M. B., Burlington, D. B., Lane, H. C., and Fauci, A. S. Effects of transforming growth factor beta on the functions of natural killer cells: depressed cytolytic activity and blunting of interferon responsiveness. J.Immunol., 136: 3916–3920, 1986.

    PubMed  CAS  Google Scholar 

  160. Kripke, M. L. Antigenicity of murine skin tumors induced by ultraviolet light. J.Natl.Cancer Inst., 53: 1333–1336, 1974.

    PubMed  CAS  Google Scholar 

  161. Urban, J. L., Burton, R. C., Holland, J. M., Kripke, M. L., and Schreiber, H. Mechanisms of syngeneic tumor rejection. Susceptibility of host-selected progressor variants to various immunological effector cells. J.Exp.Med., 155: 557–573, 1982.

    PubMed  CAS  Google Scholar 

  162. Seliger, B., Maeurer, M. J., and Ferrone, S. TAP off—tumors on. Immunol.Today, 18: 292–299, 1997.

    PubMed  CAS  Google Scholar 

  163. Doherty, P. C., Knowles, B. B., and Wettstein, P. J. Immunological surveillance of tumors in the context of major histocompatibility complex restriction of T cell function. Adv.Cancer Res., 42: 1–65, 1984.

    PubMed  CAS  Google Scholar 

  164. Ferrone, S. and Marincola, F. M. Loss of HLA class I antigens by melanoma cells: molecular mechanisms, functional significance and clinical relevance. Immunol.Today, 16: 487–494, 1995.

    PubMed  CAS  Google Scholar 

  165. Hellstrom, K. E., Hellstrom, I., and Chen, L. Can co-stimulated tumor immunity be therapeutically efficacious? Immunol.Rev., 145: 123–145, 1995.

    PubMed  CAS  Google Scholar 

  166. Gimmi, C. D., Freeman, G. J., Gribben, J. G., Gray, G., and Nadler, L. M. Human T-cell clonal anergy is induced by antigen presentation in the absence of B7 costimulation. Proc.Natl.Acad.Sci.U.S.A, 90: 6586–6590, 1993.

    PubMed  CAS  Google Scholar 

  167. Wojtowicz-Praga, S. Reversal of tumor-induced immunosuppression: a new approach to cancer therapy. J.Immunother., 20: 165–177, 1997.

    PubMed  CAS  Google Scholar 

  168. Letterio, J. J. and Roberts, A. B. Regulation of immune responses by TGF-beta. Annu.Rev.Immunol., 16: 137–161, 1998.

    PubMed  CAS  Google Scholar 

  169. Czarniecki, C. W., Chiu, H. H., Wong, G. H., McCabe, S. M., and Palladino, M. A. Transforming growth factor-beta 1 modulates the expression of class II histocompatibility antigens on human cells. J.Immunol., 140: 4217–4223, 1988.

    PubMed  CAS  Google Scholar 

  170. Geiser, A. G., Letterio, J. J., Kulkarni, A. B., Karlsson, S., Roberts, A. B., and Spom, M. B. Transforming growth factor beta 1 (TGF-beta 1) controls expression of major histocompatibility genes in the postnatal mouse: aberrant histocompatibility antigen expression in the pathogenesis of the TGF-beta 1 null mouse phenotype. Proc.Natl.Acad.Sci.U.S.A, 90: 9944–9948, 1993.

    PubMed  CAS  Google Scholar 

  171. Letterio, J. J., Geiser, A. G., Kulkarni, A. B., Dang, H., Kong, L. P., Nakabayashi, T., Mackall, C. L., Gress, R. E., and Roberts, A. B. Autoimmunity associated with tgf-beta-I-deficiency in mice is dependent on mhc class ii antigen expression. Journal of Clinical Investigation, 98: 2109–2119, 1996.

    PubMed  CAS  Google Scholar 

  172. Arteaga, C. L., Koli, K. M., Dugger, T. C., and Clarke, R. Reversal of tamoxifen resistance of human breast carcinomas in vivo by neutralizing antibodies to transforming growth factor-beta. J.Natl.Cancer Inst., 91: 46–53, 1999.

    PubMed  CAS  Google Scholar 

  173. Knabbe, C., Lippman, M. E., Wakefield, L. M., Flanders, K. C., Kasid, A., Derynck, R., and Dickson, R. B. Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell, 48: 417–428, 1987.

    PubMed  CAS  Google Scholar 

  174. Screpanti, I., Santoni, A., Gulino, A., Herberman, R. B., and Frati, L. Estrogen and antiestrogen modulation of the levels of mouse natural killer activity and large granular lymphocytes. Cell Immunol., 106: 191–202, 1987.

    PubMed  CAS  Google Scholar 

  175. Mandeville, R., Ghali, S. S., and Chausseau, J. P. In vitro stimulation of human NK activity by an estrogen antagonist (tamoxifen). Eur.J.Cancer Clin.Oncol., 20: 983–985, 1984.

    PubMed  CAS  Google Scholar 

  176. Berry, J., Green, B. J., and Matheson, D. S. Modulation of natural killer cell activity by tamoxifen in stage I post-menopausal breast cancer. Eur.J.Cancer Clin.Oncol., 23: 517–520, 1987.

    PubMed  CAS  Google Scholar 

  177. Baral, E., Nagy, E., and Berczi, I. Modulation of natural killer cell-mediated cytotoxicity by tamoxifen and estradiol. Cancer, 75: 591–599, 1995.

    PubMed  CAS  Google Scholar 

  178. Gottardis, M. M., Wagner, R. J., Borden, E. C., and Jordan, V. C. Differential ability of antiestrogens to stimulate breast cancer cell (MCF-7) growth in vivo and in vitro. Cancer Res., 49: 4765–4769, 1989.

    PubMed  CAS  Google Scholar 

  179. Fakhrai, H., Dorigo, O., Shawler, D. L., Lin, H., Mercola, D., Black, K. L., Royston, I., and Sobol, R. E. Eradication of established intracranial rat gliomas by transforming growth factor beta antisense gene therapy. Proc.Natl.Acad.Sci.U.S.A, 93: 2909–2914, 1996.

    PubMed  CAS  Google Scholar 

  180. Won, J., Kim, H., Park, E. J., Hong, Y., Kim, S. J., and Yun, Y. Tumorigenicity of mouse thymoma is suppressed by soluble type II transforming growth factor beta receptor therapy. Cancer Res, 59: 1273–7, 1999.

    PubMed  CAS  Google Scholar 

  181. Shah, A. H. and Lee, C. TGF-beta-based immunotherapy for cancer: breaching the tumor firewall. Prostate, 45: 167–172, 2000.

    PubMed  CAS  Google Scholar 

  182. Shah, A. H., Tabayoyong, W. B., Kundu, S. D., Kim, S. J., Van Parijs, L., Liu, V. C., Kwon, E., Greenberg, N. M., and Lee, C. Suppression of tumor metastasis by blockade of transforming growth factor beta signaling in bone marrow cells through a retroviral-mediated gene therapy in mice. Cancer Res, 62: 7135–8, 2002.

    PubMed  CAS  Google Scholar 

  183. Muraoka, R. S., Dumont, N., Ritter, C. A., Dugger, T. C., Brantley, D. M., Chen, J., Easterly, E., Roebuck, L. R., Ryan, S., Gotwals, P. J., Koteliansky, V., and Arteaga, C. L. Blockade of TGF-beta inhibits mammary tumor cell viability, migration, and metastases. J Clin Invest, 109: 1551–1559, 2002.

    PubMed  CAS  Google Scholar 

  184. Kulkarni, A. B., Huh, C. G., Becker, D., Geiser, A., Lyght, M., Flanders, K. C., Roberts, A. B., Sporn, M. B., Ward, J. M., and Karlsson, S. Transforming growth factor beta 1 null mutation in mice causes excessive inflammatory response and early death. Proc.Natl.Acad.Sci.U.S.A, 90: 770–774, 1993.

    PubMed  CAS  Google Scholar 

  185. Dang, H., Geiser, A. G., Letterio, J. J., Nakabayashi, T., Kong, L., Fernandes, G., and Talal, N. SLE-like autoantibodies and Sjogren's syndrome-like lymphoproliferation in TGF-beta knockout mice. J.Immunol., 155: 3205–3212, 1995.

    PubMed  CAS  Google Scholar 

  186. Yang, Y. A., Dukhanina, O., Tang, B., Mamura, M., Letterio, J. J., MacGregor, J., Patel, S. C., Khozin, S., Liu, Z. Y., Green, J., Anver, M. R., Merlino, G., and Wakefield, L. M. Lifetime exposure to a soluble TGF-beta antagonist protects mice against metastasis without adverse side effects. J.Clin.Invest, 109: 1607–1615, 2002.

    PubMed  CAS  Google Scholar 

  187. Callahan, J. F., Burgess, J. L., Fornwald, J. A., Gaster, L. M., Harling, J. D., Harrington, F. P., Heer, J., Kwon, C., Lehr, R., Mathur, A., Olson, B. A., Weinstock, J., and Laping, N. J. Identification of novel inhibitors of the transforming growth factor betal (TGF-beta1) type 1 receptor (ALK5). J.Med.Chem., 45: 999–1001, 2002.

    PubMed  CAS  Google Scholar 

  188. Inman, G. J., Nicolas, F. J., Callahan, J. F., Harling, J. D., Gaster, L. M., Reith, A. D., Laping, N. J., and Hill, C. S. SB-431542 is a potent and specific inhibitor of transforming growth factor-beta superfamily type I activin receptor-like kinase (ALK) receptors ALK4, ALK5, and ALK7. Mol.Pharmacol., 62: 65–74, 2002.

    PubMed  CAS  Google Scholar 

  189. Eyers, P. A., Craxton, M., Morrice, N., Cohen, P., and Goedert, M. Conversion of SB 203580-insensitive MAP kinase family members to drug-sensitive forms by a single amino-acid substitution. Chem.Biol., 5: 321–328, 1998.

    PubMed  CAS  Google Scholar 

  190. Laping, N. J., Grygielko, E., Mathur, A., Butter, S., Bomberger, J., Tweed, C., Martin, W., Fornwald, J., Lehr, R., Harling, J., Gaster, L., Callahan, J. F., and Olson, B. A. Inhibition of transforming growth factor (TGF)-beta1-induced extracellular matrix with a novel inhibitor of the TGF-beta type I receptor kinase activity: SB-431542. Mol.Pharmacol., 62: 58–64, 2002.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Kaklamani, V., Pasche, B. (2005). Transforming Growth Factor Beta and Breast Cancer. In: Platanias, L.C. (eds) Cytokines and Cancer. Cancer Treatment and Research, vol 126. Springer, Boston, MA. https://doi.org/10.1007/0-387-24361-5_6

Download citation

  • DOI: https://doi.org/10.1007/0-387-24361-5_6

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-0-387-24360-3

  • Online ISBN: 978-0-387-24361-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics