Skip to main content

Fluorescent Pebble Nano-Sensors and Nanoexplorers for Real-Time Intracellular and Biomedical Applications

  • Chapter
Advanced Concepts in Fluorescence Sensing

Abstract

PEBBLEs (Probes Encapsulated By Biologically Localized Embedding) are sub-micron sized optical sensors specifically designed for minimally invasive analyte monitoring in viable, single cells with applications for real time analysis of drug, toxin, and environmental effects on cell function. PEBBLE nanosensor is a general term that describes a family of matrices and nano-fabrication techniques used to miniaturize many existing optical sensing technologies. The main classes of PEBBLE nanosensors are based on matrices of cross-linked polyacrylamide, cross-linked poly(decyl methacrylate), and sol-gel silica. These matrices have been used to fabricate sensors for H+, Ca2+, K+, Na+, Mg2+, Zn2+, Cu2+, Cl, O2, NO, and glucose that range from 20 nm to 600 nm in diameter. A number of delivery techniques have been used successfully to deliver PEBBLE nanosensors into mouse oocytes, rat alveolar macrophages, rat C6-glioma, and human neuroblastoma cells. For majority of this chapter, we will focus on the fabrication, characterization and applications of all the different kinds of PEBBLE sensors developed up to date. In the remainder of the chapter, we will introduce a new family of PEBBLEs with several emerging directions in PEBBLE design and applications, from intracellular imaging to in-vivo actuating and targeting.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

4.8. References

  1. P. Buhlmann, E. Pretsch and E. Bakker, Carrier-based ion-selective electrodes and bulk optodes. 2. lonophores for potentiometric and optical sensors, Chem. Rev., 98, 1593–1687 (1998).

    Article  PubMed  Google Scholar 

  2. W. H. Tan, Z. Y. Shi and R. Kopelman, Development of Submicron Chemical Fiber Optic Sensors, Anal. Chem., 64, 2985–2990(1992).

    Article  CAS  Google Scholar 

  3. W. H. Tan, Z. Y. Shi, S. Smith, D. Bimbaum and R. Kopelman, Submicrometer Intracellular Chemical Optical Fiber Sensors, Science, 258, 778–781 (1992).

    Article  PubMed  CAS  Google Scholar 

  4. W. H. Tan, R. Kopelman, S. L. R. Barker and M. T. Miller, Ultrasmall Optical Sensors for Cellular Meaurements, Anal. Chem., 71, 606A–612A (1999).

    Article  PubMed  CAS  Google Scholar 

  5. Z. Rosenzweig and R. Kopelman, Development of a Submicrometer Optical-Fiber Oxygen Sensor, Anal. Chem., 67, 2650–2654 (1995).

    Article  PubMed  CAS  Google Scholar 

  6. Z. Rosenzweig and R. Kopelman, Analytical Properties and Sensor Size Effects of a Micrometer Sized Optical Fiber Glucose Biosensor, Anal. Chem., 68, 1408–1413 (1996).

    Article  PubMed  CAS  Google Scholar 

  7. M. Shortreed, E. Bakker and R. Kopelman, Miniature sodium-selective ion-exchange optode with fluorescent pH chromoionophores and tunable dynamic range. Anal. Chem., 68, 2656–2662 (1996).

    Article  PubMed  CAS  Google Scholar 

  8. M. R. Shortreed, S. Dourado and R. Kopelman, Development of a fluorescent optical potassium-selective ion sensor with ratiometric response for intracellular applications, Sens. Actuator B-Chem., 38, 8–12 (1997).

    Article  CAS  Google Scholar 

  9. S. L. R. Barker, M. R. Shortreed and R. Kopelman, Utilization of lipophilic ionic additives in liquid polymer film optodes for selective anion activity measurements, Anal. Chem., 69, 990–995 (1997).

    Article  PubMed  CAS  Google Scholar 

  10. S. L. R. Barker, B. A. Thorsrud and R. Kopelman, Nitrite-and chloride-selective fluorescent nano-optodes and in in vitro application to rat conceptuses, Anal. Chem., 70, 100–104 (1998).

    Article  PubMed  CAS  Google Scholar 

  11. M. L. Graber, D. C. Dilillo, B. L. Friedman and E. Pastorizamunoz, Characteristics of Fluoroprobes for Measuring Intracellular Ph, Anal. Biochem., 156, 202–212 (1986).

    Article  PubMed  CAS  Google Scholar 

  12. M. CohenKashi, M. Deutsch, R. Tirosh, H. Rachmani and A. Weinreb, Carboxyfluorescein as a fluorescent probe for cytoplasmic effects of lymphocyte stimulation, Spectroc. Acta Pt. A-Molec. Biomolec. Spectr., 53, 1655–1661 (1997).

    Article  Google Scholar 

  13. C. C. Overly, K. D. Lee, E. Berthiaume and P. J. Hollenbeck, Quantitative Measurement of Intraorganelle Ph in the Endosomal Lysosomal Pathway in Neurons by Using Ratiometric Imaging with Pyranine, Proc. Natl. Acad. Sci. U. S. A., 92, 3156–3160 (1995).

    Article  PubMed  CAS  Google Scholar 

  14. B. Morelle, J. M. Salmon, J. Vigo and P. Viallet, Are Intracellular Ionic Concentrations Accessible Using Fluorescent-Probes — the Example of Mag-Indo-1, Cell Biol. Toxicol., 10, 339–344 (1994).

    Article  PubMed  CAS  Google Scholar 

  15. W. N. Ross, Calcium on the Level, Biophys. J., 64, 1655–1656 (1993).

    Article  PubMed  CAS  Google Scholar 

  16. H. A. Clark, M. Hoyer, M. A. Philbert and R. Kopelman, Optical nanosensors for chemical analysis inside single living cells. 1. Fabrication, characterization, and methods for intracellular delivery of PEBBLE sensors, Anal. Chem., 71, 4831–4836 (1999).

    Article  PubMed  CAS  Google Scholar 

  17. H. Xu, J. W. Aylott and R. Kopelman, Fluorescent nano-PEBBLE sensors designed for intracellular glucose imaging, Analyst, 127, 1471–1477 (2002).

    Article  PubMed  CAS  Google Scholar 

  18. F. J. Arriagada and K. Osseo-Asare, Synthesis of nanosize silica in a nonionic water-in-oil microemulsion: Effects of the water/surfactant molar ratio and ammonia concentration, J. Colloid Interface Sci., 211, 210–220(1999).

    Article  PubMed  CAS  Google Scholar 

  19. Y. S. Leong and F. Candau, Inverse Micro-Emulsion Polymerization, J. Phys. Chem., 86, 2269–2271 (1982).

    Article  CAS  Google Scholar 

  20. C. Daubresse, C. Grandfils, R. Jerome and P. Teyssie, Enzyme Immobilization in Nanoparticles Produced by Inverse Microemulsion Polymerization, J. Colloid Interface Sci., 168, 222–229 (1994).

    Article  CAS  Google Scholar 

  21. H. A. Clark, S. L. R. Barker, M. Brasuel, M. T. Miller, E. Monson, S. Parus, Z. Y. Shi, A. Song, B. Thorsrud, R. Kopelman, A. Ade, W. Meixner, B. Athey, M. Hoyer, D. Hill, R. Lightle and M. A. Philbert, Subcellular optochemical nanobiosensors: probes encapsulated by biologically localised embedding (PEBBLEs), Sens. Actuator B-Chem., 51, 12–16 (1998).

    Article  CAS  Google Scholar 

  22. H. A. Clark, M. Hoyer, S. Parus, M. A. Philbert and M. Kopelman, Optochemical nanosensors and subcellular applications in living cells, Mikrochim. Acta, 131, 121–128 (1999).

    Article  CAS  Google Scholar 

  23. H. A. Clark, R. Kopelman, R. Tjalkens and M. A. Philbert, Optical nanosensors for chemical analysis inside single living cells. 2. Sensors for pH and calcium and the intracellular application of PEBBLE sensors, Anal. Chem., 71, 4837–4843 (1999).

    Article  PubMed  CAS  Google Scholar 

  24. J. P. Sumner, N. M. Westerberg, A. K. Stoddard, M. Cramer, R. B. Thompson, C. A. Fierke, and R. Kopelman, DsRed Fluorescence Based Copper Ion Nanosensor for Intracellular Imaging, Unpublished, (2003).

    Google Scholar 

  25. J. P. Sumner, J. W. Aylott, E. Monson and R. Kopelman, A fluorescent PEBBLE nanosensor for intracellular free zinc, Analyst, 127, 11–16(2002).

    Article  PubMed  CAS  Google Scholar 

  26. E. J. Park, M. Brasuel, C. Behrend, M. A. Philbert and R. Kopelman, Ratiometric optical PEBBLE nanosensors for real-time magnesium ion concentrations inside viable cells, Anal. Chem., 75, 3784–3791 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. R. P. Haugland, Molecular Probes Handbook of Fluorescent Probes and Research Chemicals, Molecular Probes, Inc., Eugene, OR (1993).

    Google Scholar 

  28. W. E. Morf, K. Seiler, B. Lehmann, C. Behringer, K. Hartman and W. Simon, Carriers for Chemical Sensors — Design-Features of Optical Sensors (Optodes) Based on Selective Chromoionophores, Pure Appl. Chem., 61, 1613–1618 (1989).

    Article  CAS  Google Scholar 

  29. E. Bakker and W. Simon, Selectivity of Ion-Sensitive Bulk Optodes, Anal. Chem., 64, 1805–1812 (1992).

    Article  CAS  Google Scholar 

  30. K. Suzuki, H. Ohzora, K. Tohda, K. Miyazaki, K. Watanabe, H. Inoue and T. Shirai, Fiberoptic Potassium-Ion Sensors Based On a Neutral Ionophore and a Novel Lipophilic Anionic Dye, Anal. Chim. Acta, 237, 155–164(1990).

    Article  CAS  Google Scholar 

  31. K. Kurihara, M. Ohtsu, T. Yoshida, T. Abe, H. Hisamoto and K. Suzuki, Micrometer-sized sodium ion-selective optodes based on a “tailed” neutral ionophore, Anal. Chem., 71, 3558–3566 (1999).

    Article  CAS  Google Scholar 

  32. G. J. Mohr, I. Murkovic, F. Lehmann, C. Haider and O. S. Wolfbeis, Application of potential-sensitive fluorescent dyes in anion-and cation-sensitive polymer membranes, Sens. Actuator B-Chem., 39, 239–245 (1997).

    Article  CAS  Google Scholar 

  33. G. J. Mohr, F. Lehmann, R. Ostereich, I. Murkovic and O. S. Wolfbeis, Investigation of potential sensitive fluorescent dyes for application in nitrate sensitive polymer membranes, Fresenius J. Anal. Chem., 357, 284–291 (1997).

    Article  CAS  Google Scholar 

  34. M. Brasuel, R. Kopelman, T. J. Miller, R. Tjalkens and M. A. Philbert, Fluorescent nanosensors for intracellular chemical analysis: Decyl methacrylate liquid polymer matrix and ion exchange-based potassium PEBBLE sensors with real-time application to viable rat C6 glioma cells, Anal. Chem., 73, 2221–2228(2001).

    Article  PubMed  CAS  Google Scholar 

  35. S. Peper, I. Tsagkatakis and E. Bakker, Cross-linked dodecyl acrylate microspheres: novel matrices for plasticizer-free optical ion sensing, Anal. Chim. Acta, 442, 25–33 (2001).

    Article  CAS  Google Scholar 

  36. I. Tsagkatakis, S. Peper and E. Bakker, Spatial and spectral imaging of single micrometer sized solvent cast fluorescent plasticized poly(vinyl chloride) sensing particles, Anal. Chem., 73, 315–320 (2001).

    Article  PubMed  CAS  Google Scholar 

  37. D. R. Uhlmann, G. Teowee and J. Boulton, The future of sol-gel science and technology, J. Sol-Gel Sci. Technol, 8, 1083–1091 (1997).

    CAS  Google Scholar 

  38. H. Xu, J. W. Aylott, R. Kopelman, T. J. Miller and M. A. Philbert, A real-time ratiometric method for the determination of molecular oxygen inside living cells using sol-gel-based spherical optical nanosensors with applications to rat C6 glioma, Anal. Chem., 73, 4124–4133 (2001).

    Article  PubMed  CAS  Google Scholar 

  39. G. Tolnai, F. Csempesz, M. Kabai-Faix, E. Kalman, Z. Keresztes, A. L. Kovacs, J. J. Ramsden and Z. Horvolgyi, Preparation and characterization of surface-modified silica-nanoparticles, Langmuir, 17, 2683–2687(2001).

    Article  CAS  Google Scholar 

  40. D. H. Napper, Steric Stabilization, J. Colloid Interface Sci., 58, 390–407 (1977).

    Article  CAS  Google Scholar 

  41. B. Vincent, The Preparation of Colloidal Particles Having (Post-Grafted) Terminally-Attached Polymer-Chains, Chem. Eng. Sci., 48, 429–436 (1993).

    Article  CAS  Google Scholar 

  42. H. D. Bijsterbosch, M. A. C. Stuart and G. J. Fleer, Effect of block and graft copolymers on the stability of colloidal silica, J. Colloid Interface Sci., 210, 37–42 (1999).

    Article  PubMed  CAS  Google Scholar 

  43. K. S. Kim, S. H. Cho and J. S. Shin, Preparation and Characterization of Monodisperse Polyacrylamide Microgels, Polym. J., 27, 508–514 (1995).

    Article  CAS  Google Scholar 

  44. R. Gref, M. Luck, P. Quellec, M. Marchand, E. Dellacherie, S. Harnisch, T. Blunk and R. H. Muller, ’stealth’ corona-core nanoparticles surface modified by polyethylene glycol (PEG): influences of the corona (PEG chain length and surface density) and of the core composition on phagocytic uptake and plasma protein adsorption, Colloid Surf. B-Biointerfaces, 18, 301–313 (2000).

    Article  CAS  Google Scholar 

  45. M. Harris, Poly(ethylene Glycol) Chemistry: Biotechnical and Biomedical Applications, Plenum, (1992).

    Book  Google Scholar 

  46. P. Kingshott and H. J. Griesser, Surfaces that resist bioadhesion, Curr. Opin. Solid State Mat. Sci., 4, 403–412(1999).

    Article  CAS  Google Scholar 

  47. M. Ogris, S. Brunner, S. Schuller, R. Kircheis and E. Wagner, PEGylated DNA/transferrin-PEI complexes: reduced interaction with blood components, extended circulation in blood and potential for systemic gene delivery, Gene Ther., 6, 595–605 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. P. Lesot, S. Chapuis, J. P. Bayle, J. Rault, E. Lafontaine, A. Campero and P. Judeinstein, Structural-dynamical relationship in silica PEG hybrid gels, J. Mater. Chem., 8, 147–151 (1998).

    Article  CAS  Google Scholar 

  49. D. Ammann, Ion-Selective Microelectrodes, Springer, Berlin (1986).

    Google Scholar 

  50. J. M. Russell, Sodium-potassium-chloride cotransport, Physiol. Rev., 80, 211–276 (2000).

    PubMed  CAS  Google Scholar 

  51. M. G. Brasuel, T. J. Miller, R. Kopelman and M. A. Philbert, Liquid polymer nano-PEBBLEs for Cl-analysis and biological applications, Analyst, 128, (Advance Article) (2003).

    Google Scholar 

  52. M. Rothmaier, U. Schaller, W. E. Morf and E. Pretsch, Response mechanism of anion-selective electrodes based on mercury organic compounds as ionophores, Anal. Chim. Acta, 327, 17–28 (1996).

    Article  CAS  Google Scholar 

  53. C. J. Behrend, and R. Kopelman Unpublished, (2003).

    Google Scholar 

  54. S. L. R. Barker, H. A. Clark, S. F. Swallen, R. Kopelman, A. W. Tsang and J. A. Swanson, Ratiometric and fluorescence lifetime-based biosensors incorporating cytochrome c′ and the detection of extra-and intracellular macrophage nitric oxide, Anal. Chem., 71, 1767–1772 (1999).

    Article  PubMed  CAS  Google Scholar 

  55. J. N. Demas and B. A. Degraff, Design and Applications of Highly Luminescent Transition-Metal Complexes, Anal. Chem., 63, A829–A837 (1991).

    Google Scholar 

  56. A. K. McEvoy, C. M. McDonagh and B. D. MacCraith, Dissolved oxygen sensor based on fluorescence quenching of oxygen-sensitive ruthenium complexes immobilized in so1-gel-derived porous silica coatings, Analyst, 121, 785–788 (1996).

    Article  CAS  Google Scholar 

  57. C. McDonagh, B. D. MacCraith and A. K. McEvoy, Tailoring of sol-gel films for optical sensing of oxygen in gas and aqueous phase, Anal. Chem., 70, 45–50 (1998).

    Article  PubMed  CAS  Google Scholar 

  58. The Merck Index 12th edition, (S. Budavari, ed.), p 1195, Merck&Co, NJ (1996).

    Google Scholar 

  59. P. C. Pandey, S. Upadhyay and H. C. Pathak, A new glucose sensor based on encapsulated glucose oxidase within organically modified sol-gel glass, Sens. Actuator B-Chem., 60, 83–89 (1999).

    Article  CAS  Google Scholar 

  60. O. S. Wolfbeis, I. Oehme, N. Papkovskaya and I. Klimant, Sol-gel based glucose biosensors employing optical oxygen transducers, and a method for compensating for variable oxygen background, Biosens. Bioelectron., 15, 69–76 (2000).

    Article  PubMed  CAS  Google Scholar 

  61. M. Brasuel, R. Kopelman, I. Kasman, T. J. Miller and M. A. Philbert, Ion Concentrations in Live Cells From Highly Selective Ion Correlation Fluorescent Nano-Sensors for Sodium, Proceedings of IEEE,1, 288–292 (2002).

    CAS  Google Scholar 

  62. A. Emmi, H. J. Wenzel, P. A. Schwartzkroin, M. Taglialatela, P. Castaldo, L. Bianchi, J. Nerbonne, G. A. Robertson and D. Janigro, Do glia have heart? Expression and functional role for ether-a-go-go currents in hippocampal astrocytes, J. Neurosci., 3915–3925 (2000).

    Google Scholar 

  63. S. K. Jung, W. Gorski, C. A. Aspinwall, L. M. Kauri and R. T. Kennedy, Oxygen microsensor and its application to single cells and mouse pancreatic islets, Anal. Chem., 71, 3642–3649 (1999).

    Article  PubMed  CAS  Google Scholar 

  64. J. R. Lakowicz, Emerging Biomedical Applications of Time-Resolved Fluorescence Spectroscopy, in Topics in Fluorescence Spectroscopy (J. R. Lakowicz, ed.), Vol. 4, 1–19, Plenum Press, New York (1994).

    Google Scholar 

  65. G. Rao, S. B. Bambot, S. C. W. Kwong, H. Szmacinski, J. Sipior, R. Holavanahali and G. Carter, Application of Fluorescence Sensing to Bioreactors, in Topics in Fluorescence Spectroscopy (J. R. Lakowicz, ed.), Vol. 4, 417–448, Plenum Press, New York (1994).

    Google Scholar 

  66. Z. Chen-Esterlit, S. F. Peteu, H. A. Clark, W. McDonald and R. Kopleman, A Comparative Study of Optical Fluorescent Nanosensors (“PEBBLEs”) and Fiber Optic Microsensors for Oxygen Sensing, Proceedings of SPIE, 3602, 156–163(1999).

    Article  CAS  Google Scholar 

  67. I. Klimant, F. Ruckruh, G. Liebsch, C. Stangelmayer and O. S. Wolfbeis, Fast response oxygen micro-optodes based on novel soluble ormosil glasses, Mikrochim. Acta, 131, 35–46 (1999).

    Article  CAS  Google Scholar 

  68. T. M. Ambrose and M. E. Meyerhoff, Characterization of photopolymerized decyl methacrylate as a membrane matrix for ion-selective electrodes, Electroanalysis, 8, 1095–1100 (1996).

    Article  CAS  Google Scholar 

  69. T. M. Ambrose and M. E. Meyerhoff, Photo-cross-linked decyl methacrylate films for electrochemical and optical polyion probes, Anal. Chem., 69, 4092–4098 (1997).

    Article  PubMed  CAS  Google Scholar 

  70. C. M. Ingersoll and F. V. Bright, Using sol gel-based platforms for chemical sensors, Chemtech, 27, 26–31 (1997).

    CAS  Google Scholar 

  71. M. T. Murtagh, M. R. Shahriari and M. Krihak, A study of the effects of organic modification and processing technique on the luminescence quenching behavior of sol-gel oxygen sensors based on a Ru(II) complex, Chem. Mat., 10, 3862–3869 (1998).

    Article  CAS  Google Scholar 

  72. M. L. Bossi, M. E. Daraio and P. F. Aramendia, Luminescence quenching of Ru(II) complexes in polydimethylsiloxane sensors for oxygen, J. Photochem. Photobiol. A-Chem., 120, 15–21 (1999).

    Article  CAS  Google Scholar 

  73. Y.E. Koo, S. Koo, and R. Kopelman, Unpublished, (2003).

    Google Scholar 

  74. M. King and R. Kopelman, Development of a hydroxyl radical ratiometric nanoprobe, Sens. Actuator B-Chem., 90, 76–81 (2003).

    Article  CAS  Google Scholar 

  75. R. Roots and S. Okada, Estimation of Life Times and Diffusion Distances of Radicals Involved in X-Ray-Induced DNA Strand Breaks or Killing of Mammalian-Cells, Radiat. Res., 64, 306–320 (1975).

    Article  PubMed  CAS  Google Scholar 

  76. G. Lubec, The hydroxyl radical: From chemistry to human disease, J. Invest. Med., 44, 324–346 (1996).

    CAS  Google Scholar 

  77. B. B. Li. P. L. Gutierrez and N. V. Blougli, Trace determination of hydroxyl radical using fluorescence detection, Oxidants and Antioxidants, Pt B, 300, 202–216 (1999).

    Article  Google Scholar 

  78. X. F. Yang and X. Q. Guo, Study of nitroxide-linked naphthalene as a fluorescence probe for hydroxyl radicals, Analytica Chimica Acta, 434, 169–177 (2001).

    Article  CAS  Google Scholar 

  79. J. N. Anker, C. Behrend and R. Kopelman, Aspherical magnetically modulated optical nanoprobes (MagMOONs), J. Appl. Phys., 93, 6698–6700 (2003).

    Article  CAS  Google Scholar 

  80. J. N. Anker and R. Kopelman, Magnetically modulated optical nanoprobes, Appl. Phys. Lett., 82, 1102–1104(2003).

    Article  CAS  Google Scholar 

  81. J. N. Anker C. J. Behrend, and R. Kopelman, Brownian Modulated Optical Nanoprobes, Appl. Phys. Lett., Submitted, (2003).

    Google Scholar 

  82. A. Hyvarinen, J. Karhunen, and E. Oja, Independent component analysis, J. Wiley, New York (2001).

    Book  Google Scholar 

  83. R. R. Agayan, F. Gittes, R. Kopelman and C. F. Schmidt, Optical trapping near resonance absorption, Appl. Optics, 41, 2318–2327 (2002).

    Article  CAS  Google Scholar 

  84. W. Arap, R. Pasqualini and E. Ruoslahti, Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model, Science, 279, 377–380 (1998).

    Article  PubMed  CAS  Google Scholar 

  85. N. Assa-Munt, X. Jia, P. Laakkonen and E. Ruoslahti, Solution structures and integrin binding activities of an RGD peptide with two isomers, Biochemistry, 40, 2373–2378 (2001).

    Article  PubMed  CAS  Google Scholar 

  86. B. P. Eliceiri and D. A. Cheresh, The role of alpha v integrins during angiogenesis: insights into potential mechanisms of action and clinical development, J. Clin. Invest., 103, 1227–1230 (1999).

    Article  PubMed  CAS  Google Scholar 

  87. S. Kim, K. Bell, S. A. Mousa and J. A. Varner, Regulation of angiogenesis in vivo by ligation of integrin alpha 5 beta 1 with the central cell-binding domain of fibronectin. Am. J. Pathol., 156, 1345–1362 (2000).

    Article  PubMed  CAS  Google Scholar 

  88. R. Mathurdevre and M. Lemort, Biophysical Properties and Clinical-Applications of Magnetic-Resonance-Imaging Contrast Agents, Br. J. Radiol., 68, 225–247 (1995).

    Article  CAS  Google Scholar 

  89. W. Stummer, A. Hassan, O. Kempski and C. Goetz, Photodynamic therapy within edematous brain tissue: Considerations on sensitizer dose and time point of laser irradiation, J. Photochem. Photobiol. B-Biol., 36, 179–181 (1996).

    Article  CAS  Google Scholar 

  90. T. J. Dougherty, C. J. Gomer, B. W. Henderson, G. Jori, D. Kessel, M. Korbelik, J. Moan and Q. Peng, Photodynamic therapy, J. Natl. Cancer Inst., 90, 889–905 (1998).

    Article  PubMed  CAS  Google Scholar 

  91. M. J. Moreno, E. Monson, R. G. Reddy, A. Rehemtulla, B. D. Ross, M. Philbert, R. J. Schneider and R. Kopelman, Production of singlet oxygen by Ru(dpp(S03)(2))(3) incorporated in polyacrylamide PEBBLES, Sens. Actuator B-Chem., 90, 82–89 (2003).

    Article  CAS  Google Scholar 

  92. L. C. Penning and T. M. Dubbelman, Fundamentals of Photodynamic Therapy — Cellular and Biochemical Aspects, Anti-Cancer Drugs, 5, 139–146 (1994).

    Article  PubMed  CAS  Google Scholar 

  93. F. Yan, and R. Kopelman, Photochem Photobiol, In Press, (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Xu, H. et al. (2005). Fluorescent Pebble Nano-Sensors and Nanoexplorers for Real-Time Intracellular and Biomedical Applications. In: Geddes, C.D., Lakowicz, J.R. (eds) Advanced Concepts in Fluorescence Sensing. Topics in Fluorescence Spectroscopy, vol 10. Springer, Boston, MA. https://doi.org/10.1007/0-387-23647-3_4

Download citation

Publish with us

Policies and ethics