Skip to main content

Krawtchouk Polynomials and Krawtchouk Matrices

  • Chapter
Book cover Recent Advances in Applied Probability

Abstract

Krawtchouk matrices have as entries values of the Krawtchouk polynomials for nonnegative integer arguments. We show how they arise as condensed Sylvester-Hadamard matrices via a binary shuffling function. The underlying symmetric tensor algebra is then presented.

To advertise the breadth and depth of the field of Krawtchouk polynomials / matrices through connections with various parts of mathematics, some topics that are being developed into a Krawtchouk Encyclopedia are listed in the concluding section. Interested folks are encouraged to visit the website http://chanoir.math.siu.edu/Kravchuk/index.html which is currently in a state of development.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • N.M. Atakishiyev and K.B. Wolf, Fractional Fourier-Kravchuk transform J. Opt. Soc. Amer. A,147 (1997) 1467–1477.

    MathSciNet  Google Scholar 

  • N. Bose, Digital filters: theory and applications, North-Holland, 1985.

    Google Scholar 

  • N. Botros, J. Yang, P. Feinsilver, and R. Schott, Hardware Realization of Krawtchouk Transform using VHDL Modeling and FPGAs, IEEE Transactions on Industrial Electronics, 496 (2002)1306–1312.

    Article  Google Scholar 

  • W.Y.C. Chen and J.D. Louck, The combinatorics of a class of representation functions, Adv. in Math., 140 (1998) 207–236.

    Article  MathSciNet  Google Scholar 

  • P. Delsarte, Bounds for restricted codes, by linear programming, Philips Res. Reports, 27 (1972) 272–289.

    MATH  MathSciNet  Google Scholar 

  • P. Delsarte, Four fundamental parameters of a code and their combinatorial significance, Info. & Control, 23 (1973) 407–438.

    MATH  MathSciNet  Google Scholar 

  • P. Delsarte, An algebraic approach to the association schemes of coding theory, Philips Research Reports Supplements, No. 10, 1973.

    Google Scholar 

  • C.F. Dunkl, A Krawtchouk polynomial addition theorem and wreath products of symmetric groups, Indiana Univ. Math. J., 25 (1976) 335–358.

    Article  MATH  MathSciNet  Google Scholar 

  • C.F. Dunkl and D.F. Ramirez, Krawtchouk polynomials and the symmetrization of hypergraphs, SIAM J. Math. Anal., 5 (1974) 351–366.

    MathSciNet  Google Scholar 

  • G.K. Eagelson, A characterization theorem for positive definite sequences of the Krawtchouk polynomials, Australian J. Stat, 11 (1969) 29–38.

    Google Scholar 

  • P. Feinsilver and R. Fitzgerald, The spectrum of symmetric Krawtchouk matrices, Lin. Alg. & Appl., 235 (1996) 121–139.

    MathSciNet  Google Scholar 

  • P. Feinsilver and J. Kocik, Krawtchouk matrices from classical and quantum random walks, Contemporary Mathematics, 287 (2001) 83–96.

    MathSciNet  Google Scholar 

  • P. Feinsilver and R. Schott, Krawtchouk polynomials and finite probability theory, Probability Measures on Groups X, Plenum (1991) 129–135.

    Google Scholar 

  • F.G. Hess, Alternative solution to the Ehrenfest problem, Amer. Math. Monthly, 61 (1954) 323–328.

    MATH  MathSciNet  Google Scholar 

  • M. Kac, Random Walks and the theory of Brownian motion, Amer. Math. Monthly 54, 369–391, 1947.

    MATH  MathSciNet  Google Scholar 

  • S. Karlin, J. McGregor, Ehrenfest Urn Model, J. Appl. Prob. 2, 352–376, 1965.

    MathSciNet  Google Scholar 

  • M. Krawtchouk, Sur une generalisation des polynomes d’Hermite, Comptes Rendus, 189 (1929) 620–622.

    MATH  Google Scholar 

  • M. Krawtchouk, Sur la distribution des racines des polynomes orthogonaux, Comptes Rendus, 196 (1933) 739–741.

    MATH  Google Scholar 

  • V.I. Levenstein, Krawtchouk polynomials and universal bounds for codes and design in Hamming spaces, IEEE Transactions on Information Theory, 415 (1995) 1303–1321.

    Google Scholar 

  • S.J. Lomonaco, Jr., A Rosetta Stone for quantum mechanics with an introduction to quantum computation, http://www.arXiv.org/abs/quant-ph/0007045

    Google Scholar 

  • F.J. MacWilliams and N.J.A. Sloane, The theory of Error-Correcting Codes, The Netherlands, North Holland, 1977.

    Google Scholar 

  • A.J.F. Siegert, On the approach to statistical equilibrium, Phys. Rev., 76 (1949), 1708–1714.

    Article  MATH  Google Scholar 

  • D. Stanton, Some q-Krawtchouk polynomials on Chevalley groups, Amer. J. Math., 102 (1980) 625–662.

    MATH  MathSciNet  Google Scholar 

  • G. Szegö, Orthogonal Polynomials, Colloquium Publications, Vol. 23, New York, AMS, revised eddition 1959, 35–37.

    Google Scholar 

  • D. Vere-Jones, Finite bivariate distributions and semi-groups of nonnegative matrices, Q. J. Math. Oxford, 222 (1971) 247–270.

    MATH  MathSciNet  Google Scholar 

  • M. Voit, Asymptotic distributions for the Ehrenfest urn and related random walks, J. Appl. Probab., 33 (1996) 340–356.

    MATH  MathSciNet  Google Scholar 

  • R.K. Rao Yarlagadda and J.E. Hershey, Hadamard matrix analysis and synthesis: with applications to communications and signal/image processing, Kluwer Academic Publishers, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc.

About this chapter

Cite this chapter

Feinsilver, P., Kocik, J. (2005). Krawtchouk Polynomials and Krawtchouk Matrices. In: Baeza-Yates, R., Glaz, J., Gzyl, H., Hüsler, J., Palacios, J.L. (eds) Recent Advances in Applied Probability. Springer, Boston, MA. https://doi.org/10.1007/0-387-23394-6_5

Download citation

Publish with us

Policies and ethics