Skip to main content

Engineering Plants for Durable Disease Resistance

  • Chapter

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Akkaya, M.S., Shoemaker, R.C., Specht, J.E., Bhagwat, A.A., and Cregan, P.B. 1995. Integration of simple sequence repeat DNA markers into a soybean linkage map. Crop Sci. 35(5):439–1445.

    Google Scholar 

  • Alexander, D., Goodman, R.M., Gut-Rella, M., Glascock, C., Weymann, K., Friedrich, L., Maddox, D., Ahl-Goy, P., Luntz, T., Ward, E., and Ryals, J.A. 1993. Increased tolerance to two oomycete pathogens in transgenic tobacco expressing pathogenesis-related protein 1a. Proc. Natl. Acad. Sci. USA 90:7327–7331.

    PubMed  CAS  Google Scholar 

  • Anderson, J.A., Stack, R.W., Liu, S., Waldron, B.L., Field, A.D., Coyne, C., Moreno-Sevilla, B., Mitchell Fetch, J., Song, Q.J., Cregan, P.B., and Frohberg, R.C. 2001. DNA markers for Fusarium head blight resistance QTL in two wheat populations. Theor. Appl. Genet. 102:1164–1168.

    CAS  Google Scholar 

  • Asao, H., Nishizawa, Y., Arai, S., Sato, T., Hirai, M., Yoshida, K., Shinmyo, A., and Hibi, T. 1997. Enhanced resistance against a fungal pathogen Sphaerotheca humuli in transgenic strawberry expressing a rice chitinase gene. Plant Biotechnol. 14:145–149.

    CAS  Google Scholar 

  • Bai, G., Kolb, F.L., Shaner, G., and Domier, L.L. 1999. Amplified fragment length polymorphism markers linked to a major quantitative trait locus controlling scab resistance in wheat. Phytopathology 89:343–348.

    CAS  Google Scholar 

  • Bai, G., and Shaner, G. 1994. Scab of wheat: prospects for control. Plant Dis. 78:760–766.

    Google Scholar 

  • Ban, T. 2000. Review studies on the genetics of resistance to Fusarium head blight caused by Fusarium graminearum in wheat. In Proceedings of the International Symposium on Wheat Improvement for Scab Resistance, eds. J. Raupp, Z. Ma, P. Chen, and D. Liu, pp. 82–93, May 5–11, 2000. Suzhou and Nanjing, The Republic of China.

    Google Scholar 

  • Baum, T.J., Hiatt, A., Parrott, W.A., Pratt, L.H., and Hussey, R.S. 1996. Expression in tobacco of a functional monoclonal antibody specific to stylet secretions of the root-knot nematode. Mol. Plant Microbe Interact. 9:82–387.

    Google Scholar 

  • Beffa, R., Szell, M., Meuwly, P., Pay, A., Vögeli-Lange, R., Métraux, J.P., Neuhaus, G., Meins, F., Jr., and Nagy, F. 1995. Cholera toxin elevates pathogen resistance and induces pathogenesis-related gene expression in tobacco. EMBO J. 14:5753–5761.

    PubMed  CAS  Google Scholar 

  • Ben-Yakir, D., and Shochat, C. 1996. The fate of immunoglobulin G fed to larvae of Ostrinia nubilalis. Entomol. Exp. Appl. 81:1–5.

    CAS  Google Scholar 

  • Berna, A., and Bernier, F. 1997. Regulated expression of a wheat germin gene in tobacco: oxalate oxidase activity and apoplastic localization of the heterologous protein. Plant Mol. Biol. 33:417–429.

    PubMed  CAS  Google Scholar 

  • Berrocal-Lobo, M., Molina, A., and Solano, R. 2002. Constitutive expression of ethylene-response-factor 1 in Arabidopsis confers resistance to several necrotrophic fungi. Plant J. 29:23–32.

    PubMed  CAS  Google Scholar 

  • Bertioli, D.J., Guimarces, P.M., Jones, J.D.G., Thomas, C.M., Burrows, P.R., Monte, D.C., and De M. Leal-Bertioli, S.C. 2001. Expression of Tomato Cf genes and their corresponding avirulence genes in transgenic tobacco plants using nematode responsive promoters. Ann. Appl. Biol. 138:333–342.

    CAS  Google Scholar 

  • Bi, Y.-M., Cammue, B.P.A., Goodwin, P.H., Krishna Raj, S., and Saxena, P.K. 1999. Resistance of Botrytis cinerea in scented geranium transformed with a gene encoding the antimicrobial protein Ace-AmP1. Plant Cell Rep. 18:835–840.

    CAS  Google Scholar 

  • Bieri, S., Potrykus, I., and Fütterer, J. 2000. Expression of active barley seed ribosome-inactivating protein in transgenic wheat. Theor. Appl. Genet. 100:755–763.

    CAS  Google Scholar 

  • Bliffeld, M., Mundy, J., Potrykus, I., and Fütterer, J. 1999. Genetic engineering of wheat for increased resistance to powdery mildew disease. Theor. Appl. Genet. 98:1079–1086.

    CAS  Google Scholar 

  • Bohlmann, H. 1994. The role of thionins in plant protection. Crit. Rev. Plant Sci. 13:1–16.

    CAS  Google Scholar 

  • Bolar, J.P., Norelli, J.L., Harman, G.E., Brown, S.K., and Aldwinckle, H.S. 2001. Synergistic activity of endochitinase and exochitinase from Trichoderma atroviride (T. harzianum) against the pathogenic fungus (Venturia inaequalis) intransgenic apple plants. Transgenic Res. 10:533–543.

    PubMed  CAS  Google Scholar 

  • Bolar, J.P., Norelli, J.L., Wong, K.W., Hayes, C.K., Harman, G.E., and Aldwinckle, H.S. 2000. Expression of endochitinase from Trichoderma harzianum in transgenic apple increases resistance to apple scab and reduces vigor. Phytopathology 90:72–77.

    CAS  Google Scholar 

  • Brandwagt, B.F., Kneppers, T.J.A., Nijkamp, H.J.J., and Hille, J. 2002. Overexpression of the tomato Asc-1 gene mediates high insensitivity to AAL toxin and fumonisin B1 in tomato hairy roots and confers resistance to Alternaria alternata f.sp. lycopersici in Nicotiana umbratica plants. Mol. Plant Microbe Interact. 15:35–42.

    PubMed  CAS  Google Scholar 

  • Broekaert, W.F., Terras, F.R.G., Cammue, B.P.A., and Osborn, R.W. 1995. Plant defensins: novel antimicrobial peptides as components of the host defense system. Plant Physiol. 108:1353–1358.

    PubMed  CAS  Google Scholar 

  • Broekaert, W.F., Terras, F.R.G., and Cammue B.P.A. 2000. Induced and pre-formed antimicrobial proteins. In Mechanisms of Rresistance to Plant Diseases, eds. A.J. Slusarenko, R.S.S. Fraser, and L.C. Van Loon, pp. 371–477. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Broglie, R., Broglie, K., Roby, D., and Chet, I. 1993. Production of transgenic plants with enhanced resistance to microbial pathogens. In Transgenic plants, eds. S.D. Kung, and R. Wu, Vol. 1, pp. 265–276. New York: Academic Press.

    Google Scholar 

  • Broglie, K., Chet, I., Holliday, M., Cressman, R., Biddle, P., Knowlton, S., Mauvais, C.J., and Broglie, R. 1991. Transgenic plants with enhanced resistance to the fungal pathogen Rhizoctonia solani. Science 254:1194–1197.

    CAS  Google Scholar 

  • Buerstmayr, H., Lemmens, M., Hartl, L., Doldi, L., Steiner, B., Stierschneider, M., and Ruckenbauer, P. 2002. Molecular mapping of QTL for Fusarium head blight resistance in spring wheat. I. Resistance to fungal spread (type II resistance). Theor. Appl. Genet. 104:84–91.

    PubMed  CAS  Google Scholar 

  • Buerstmayr, H., Steiner, B., Lemmens, M., and Ruckenbauer, P. 2000. Resistance to Fusarium head blight in winter wheat: heritability and trait associations. Crop Sci. 40:1012–1018.

    Google Scholar 

  • Cao, H., Glazebrook, J., Clarke, J.D., Volko, S., and Dong, X. 1997. The Arabidopsis NPR1 gene that controls systemic acquired resistance encodes a novel protein containing ankyrin repeats. Cell 88:57–63.

    PubMed  CAS  Google Scholar 

  • Cao, H., Li, X., and Dong, X. 1998. Generation of broad-spectrum disease resistance by overexpression of an essential regulatory gene in systemic acquired resistance. Proc. Natl. Acad. Sci. USA 95:6531–6536.

    PubMed  CAS  Google Scholar 

  • Cary, J.W., Rajasekaran, K., Jaynes, J.M., and Cleveland, T.E. 2000. Transgenic expression of a gene encoding a synthetic antimicrobial peptide results in inhibition of fungal growth in vitro and in planta. Plant Sci. 154:171–181.

    PubMed  CAS  Google Scholar 

  • Cervone, F., De Lorenzo, G., Degré, L., Salvi, G., and Bergami, M. 1987. Purification and characterization of a polugalacturonase-inhibiting protein from Phaseolus vulgaris L. Plant Physiol. 85:631–637.

    PubMed  CAS  Google Scholar 

  • Chang, M.M., Chiang, C.C., Martin, M.W., and Hadwiger, L.A. 1993. Expression of a pea disease resistance response gene in the potato cultivar Shepody. Am. Potato J. 70:635–647.

    Google Scholar 

  • Charmet, G., Robert, N., Perretant, M.R., Gay, G., Sourdille, P., Groos, C., Bernard, S., and Bernard, M. 1999. Marker-assisted recurrent selection for cumulating additive and interactive QTLs in recombinant inbred lines. Theor. Appl. Genet. 99:1143–1148.

    Google Scholar 

  • Chen, W.P., Chen, P.D., Liu, D.J., Kynast, R., Friebe, B., Velazhahan, R., Muthukrishnan, S., and Gill, B.S. 1999. Development of wheat scab symptoms is delayed in transgenic wheat plants that constitutively express a rice thaumatin-like protein gene. Theor. Appl. Genet. 99:755–760.

    CAS  Google Scholar 

  • Chen, W.P., and Punja, Z.K. 2002. Agrobacterium-mediated transformation of American ginseng with a rice chitinase gene. Plant Cell Rep. 20:1039–1045.

    CAS  Google Scholar 

  • Chern, M.S., Fitzgerald, H.A., Yadav, R.C., Canlas, P.E., Dong, X., and Ronald, P.C. 2001. Evidence for a disease-resistance pathway in rice similar to the NPR1-mediated signaling pathway in Arabidopsis. Plant J. 27:101–113.

    PubMed  CAS  Google Scholar 

  • Chong, D.K.X., and Langridge, W.H.R. 2000. Expression of full-length bioactive antimicrobial human lactoferrin in potato plants. Transgenic Res. 9:71–78.

    PubMed  CAS  Google Scholar 

  • Ciardi, J.A., Tieman, D.M., Lund, S.T., Jones, J.B., Stall, R.E., and Klee, H.J. 2000. Response to Xanthomonas campestris pv. vesicatoria in tomato involves regulation of ethylene receptor gene expression. Plant Physiol. 123:81–92.

    PubMed  CAS  Google Scholar 

  • Clausen, M., Kräuter, R., Schachermayr, G., Potrykus, I., and Sautter, C. 2000. Antifungal activity of a virally encoded gene in transgenic wheat. Nat. Biotechnol. 18:446–449.

    PubMed  CAS  Google Scholar 

  • Constabel, P.C., Bertrand, C., and Brisson, N. 1993. Transgenic potato plants overexpression the pathogenesis-related STH-2 gene show unaltered susceptibility to Phytophthora infestans and potato virus X. Plant Mol. Biol. 22:775–782.

    PubMed  CAS  Google Scholar 

  • Cornelissen, B.J.C., and Schram, A. 2000. Transgenic approaches to control epidemic spread of diseases. In Mechanisms of Resistance to Plant Diseases, eds. A. Slusarenko, R.S.S. Fraser, and L.C. van Loon, pp. 575–599. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Coutos-Thevenot, P., Poinssot, B., Boromelli, A., Yean, H., Breda, C., Buffard, D., Esnault, R., Hain, R., and Boulay, M. 2001. In vitro tolerance to Botrytis cinerea of grapevine 41B rootstock in transgenic plants expressing the stilbene synthase Vst1 gene under the control of a pathogen-inducible PR10 promoter. J. Expt. Bot. 52:901–910.

    CAS  Google Scholar 

  • Dai, Z., Hooker, B.S., Anderson, D.B., and Thomas, S.R. 2000. Expression of Acidothermus cellulolyticus endoglucanase E1 in transgenic tobacco: biochemical characteristics and physiological effects. Transgenic Res. 9:43–54.

    PubMed  CAS  Google Scholar 

  • Datta, K., Koukoliková-Nicola, Z., Baisakh, N., Oliva, N., and Datta, S.K. 2000. Agrobacterium-mediated engineering for sheath blight resistance of indica rice cultivars from different ecosystems. Theor. Appl. Genet. 100:832–839.

    CAS  Google Scholar 

  • Datta, K., Tu, J., Oliva, N., Ona, I., Velazhahan, R., Mew, T.W., Muthukrishnan, S., and Datta, S.K. 2001. Enhanced resistance to sheath blight by constitutive expression of infection-related rice chitinase in transgenic elite indica rice cultivars. Plant Sci. 160:405–414.

    PubMed  CAS  Google Scholar 

  • Datta, K., Velazhahan, R., Oliva, N., Ona, I., Mew, T., Khush, G.S., Muthukrishnan, S., and Datta, S.K. 1999. Overexpression of cloned rice thaumatin-like protein (PR-5) in transgenic rice plants enhances environmental-friendly resistance to Rhizoctonia solani causing sheath blight disease. Theor. Appl. Genet. 98:1138–1145.

    CAS  Google Scholar 

  • De Bolle, M.F.C., Osborn, R.W., Goderis, I.J., Noe, L., Acland, D., Hart, C.A., Torrekens, S., Van Leuven, F., and Broekaert, W.F. 1996. Antimicrobial peptides from Mirabilis jalapa and Amaranthus caudatus: expression processing, localization and biological activity in transgenic tobacco. Plant Mol. Biol. 31:993–1008.

    PubMed  Google Scholar 

  • de Gray, G., Rajasekaran, K., Smith, F., Sanford, J., and Daniell, H. 2001. Expression of an antimicrobial peptide via the chloroplast genome to control phytopathogenic bacteria and fungi. Plant Physiol. 127:852–862.

    Google Scholar 

  • de Jaeger, G., De Wilde, C., Eeckhout, D., Fiers, E., and Depicker, A. 2000. The plantibody approach: expression of antibody genes in plants to modulate plant metabolism or to obtain pathogen resistance. Plant Mol. Biol. 43:419–428.

    PubMed  Google Scholar 

  • Desjardins, A.E., and Hohn, T.M. 1997. Mycotoxins in plant pathogenesis. Mol. Plant Microbe Interact. 10:147–152.

    CAS  Google Scholar 

  • Delaney, T.P., Uknes, S., Vernooij, B., Friedrich, L., Weymann, K., Negrotto, D., Gaffney, T., Gut-Rella, M., Kessman, H., Ward, E., and Ryals, J. 1994. A central role of salicylic acid in plant disease resistance. Science 266:1247–1250.

    CAS  Google Scholar 

  • Desiderio, A., Aracri, B., Leckie, F., Mattei, B., Salvi, G., Tigelaar, H., Van Roekel, J.S.C., Baulcombe, D.C., Melchers, L.S., Lorenzo, G., and Cervone, F. 1997. Polygalacturonase-inhibiting proteins (PGIPs with different specifities are expressed in Phaseolus vulgaris. Mol. Plant Microbe Interact. 10:852–860.

    PubMed  CAS  Google Scholar 

  • De Wit, P.J.G.M., and van Kan, J.A.L. 1993. Is durable resistance against fungi attainable through biotechnological procedures? In Durability of Disease Resistance, eds. Th. Jacobs, and J.E. Parlevliet, pp. 57–70. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Does, M.P., Houterman, P.M., Dekker, H.L., and Cornelissen, B.J.C. 1999. Processing, targeting, and antifungal activity of stinging nettle agglutin in transgenic tobacco. Plant Physiol. 120:421–431.

    PubMed  CAS  Google Scholar 

  • Donaldson, P.A., Anderson, T., Lane, B.G., Davidson, A.L., and Simmonds, D.H. 2001. Soybean plants expressing an active oligomeric oxalate oxidase from wheat gf-2.8 (germin) gene are resistant to the oxalate-secreting pathogen Sclerotinia sclerotiorum. Physiol. Mol. Plant Pathol. 59:297–307.

    CAS  Google Scholar 

  • Donofrio, N.M., and Delaney, T.P. 2001. Abnormal callose response phenotype and hyper-susceptibility to Peronospora parasitica in defense-compromised Arabidopsis nim 1-1 and salicylate hydroxylase-expressing plants. Mol. Plant Microbe Interact. 14:439–450.

    PubMed  CAS  Google Scholar 

  • Dumas, B., Freyssinet, G., and Pallett, K.E. 1995. Tissue-specific expression of germin-like oxalate oxidase during development and fungal infection of barley seedlings. Plant Physiol. 107:1091–1096.

    PubMed  CAS  Google Scholar 

  • East, I.J., Fitzgerald, C.J., Pearson, R.D., Donaldson, R.A., Vuocolo, T., Cadogen, L.C., Tellam, R.L., and Eisemann, C.H. 1993. Lucilla cuprina: inhibition of larval growth induced by immunization of host sheep with extracts of larval peritrophic membrane. Int. J. Parasitol. 23:221–229.

    PubMed  CAS  Google Scholar 

  • El Quakfaoui, S., Potvin, C., Brzezinksi, R., and Asselin, A. 1995. A Streptomyces chitosanase is active in transgenic tobacco. Plant Cell Rep. 15:222–226.

    Google Scholar 

  • Epple, P., Apel, K., and Bohlmann, H. 1997. Overexpression of an endogenous thionin enhances resistance of Arabidopsis against Fusarium oxysporum. Plant Cell 9:509–520.

    PubMed  CAS  Google Scholar 

  • Fays, B., and Parker, J. 2000. Interplay of signaling pathways in plant disease resistance. Trends Genet. 16:449–455.

    Google Scholar 

  • Fettig, S., and Hess, D. 1999. Expression of a chimeric stilbene synthase gene in transgenic wheat lines. Transgenic Res. 8:179–189.

    CAS  Google Scholar 

  • Feuerstein, G., Powell, J.A., Knower, A.T., and Hunter, K.W., Jr. 1985. Monoclonal antibodies to T-2 toxin. In vitro neutralization of protein synthesis inhibition and protection of rats against lethal toxemia. J. Clin. Invest. 76:2134–2138.

    PubMed  CAS  Google Scholar 

  • Friedrich, L., Lawton, K., Dietrich, R., Willits, M., Cade, R., and Ryals, J. 2001. NIM1 Overexpression in Arabidopsis potentiates plant disease resistance and results in enhanced effectiveness of fungicides. Mol. Plant Microbe Interact. 14:1114–1124.

    PubMed  CAS  Google Scholar 

  • Gao, A.G., Hakimi, S.M., Mittanck, C.A., Wu, Y., Woerner, B.M., Stark, D.M., Shah, D.M., Liang, J., and Rommens, C.M.T. 2000. Fungal pathogen protection in potato by expression of a plant defensin peptide. Nat. Biotechnol. 18:1307–1310.

    PubMed  CAS  Google Scholar 

  • Genoud, T., and Métraux, J. 1999. Crosstalk in plant cell signaling: structure and function of the genetic network. Trends Plant Sci. 4:503–507.

    PubMed  Google Scholar 

  • Gilbert, J., and Tekauz, A. 2000. Review: recent developments in research on fusarium head blight in Canada. Can. J. Plant Pathol. 22:1–8.

    Google Scholar 

  • Gilchrist, L., Rajaram, S., and Crossa, J. 2000. New sources of scab resistance and breeding progress at CIMMYT. In Proceedings of the International Symposium. Wheat Improvement for Scab Resistance, eds. J. Raupp, Z. Ma, Z., P. Chen, and D. Liu, pp. 194–199, May 5–11, 2000. Suzhoe and Nanjing, China.

    Google Scholar 

  • Grison, R., Grezes-Besset, B., Scheider, M., Lucante, N., Olsen, L., Leguay, J.L., and Toppan, A. 1996. Field tolerance to fungal pathogens of Brassica napus constitutively expressing a chimeric chitinase gene. Nat. Biotechnol. 14:643–646.

    PubMed  CAS  Google Scholar 

  • Hain, R., Reif, H.-J., Krause, E., Langebartels, R., Kindl, H., Vornam, B., Wiese, W., Schmeltzer, E., Schreier, P.H., Stöker, R.H., and Stenzel, K. 1993. Disease resistance results from foreign phytoalexin expression in a novel plant. Nature 36:153–156.

    Google Scholar 

  • Hammerschmidt, R. 1999. Phytoalexins: what have we learned after 60 years? Annu. Rev. Phytopathol. 37:285–306.

    PubMed  CAS  Google Scholar 

  • Harris, L.J., and Gleddie, S.C. 2001. A modified Rpl3 gene from rice confers tolerance of the Fusarium graminearum mycotoxin deoxynivalenol to transgenic tobacco. Physiol. Mol. Plant Pathol. 58:173–181.

    CAS  Google Scholar 

  • He, X.Z., and Dixon, R.A. 2000. Genetic manipulation of isoflavone 7-O-methyltransferase enhances biosynthesis of 4′-O-methylated isoflavonoid phytoalexins and disease resistance in alfalfa. Plant Cell 12:1689–1702.

    PubMed  CAS  Google Scholar 

  • Heath, M.C. 2000. Hypersensitive response-related death. Plant Mol. Biol. 44:321–334.

    PubMed  CAS  Google Scholar 

  • Hennin, C., Höfte, M., and Diederichsen, E. 2001. Functional expression of Cf 9 and Avr9 genes in Brassica napus induces enhanced resistance to Leptosphaeria maculans. Mol. Plant Microbe Interact. 14:1075–1085.

    PubMed  CAS  Google Scholar 

  • Hipskind, J.D., and Paiva, N.L. 2000. Constitutive accumulation of a resveratrol-glucoside in transgenic alfalfa increases resistance to Phoma medicaginis. Mol. Plant Microbe Interact. 13:551–562.

    PubMed  CAS  Google Scholar 

  • Hirt, H. 1997. Multiple roles of MAP kinases in plant signal transduction. Trends Plant Sci. 2:11–15.

    Google Scholar 

  • Hittalmani, S., Parco, A., Mew, T.V., Zeigler, R.S., and Huang, N. 2000. Fine mapping and DNA marker-assisted pyramiding of three major genes for blast resistance in rice. Theor. Appl. Genet. 1007:1121–1128.

    Google Scholar 

  • Holtorf, S., Ludwig-Müller, J., Apel, K., and Bohlmann, H. 1998. High-level expression of a viscotoxin in Arabidopsis thaliana gives enhanced resistance against Plasmodiophora brassicae. Plant Mol. Biol. 36:637–680.

    Google Scholar 

  • Honée, G. 1999. Engineered resistance against fungal pathogens. Eur. J. Plant Pathol. 105:319–326.

    Google Scholar 

  • Howie, W., Joe, L., Newbigin, E., Suslow, T., and Dunsmuir, P. 1994. Transgenic tobacco plants which express the chiA gene from Serretia marcescens have enhanced tolerance to Rhizoctonia solani. Transgenic Res. 3:90–98.

    CAS  Google Scholar 

  • Huang, N., Angeles, E.R., Domingo, J., Magpantay, G., Singh, S., Zhang, G., Kumaravadivel, N., Bennett, J., and Khush, G.S. 1997. Pyramiding of bacterial blight resistance genes in rice: marker-assisted selection using RFLP and PCR. Theor. Appl. Genet. 95(3):313–320.

    CAS  Google Scholar 

  • Hunter, K.W., Jr., Brimfield, A.A., Miller, M., Finkelman, F.D., and Chu, S.F. 1985. Preparation and characterization of monoclonal antibodies to the trichothecene mycotoxin T-2. Appl. Environ. Microbiol. 49:168–172.

    PubMed  CAS  Google Scholar 

  • Jach, G., Görnhardt, B., Mundy, J., Logemann, J., Pinsdorf, E., Leah, R., Schell, J., and Mass, C. 1995. Enhanced quantitative resistance against fungal disease by combinatorial expression of different barley antifungal proteins in transgenic tobacco. Plant J. 8:97–109.

    PubMed  CAS  Google Scholar 

  • Jach, G., Logemann, S., Wolf, G., Oppenheim, A., Chet, I., Schell, J., and Logemann, J. 1992. Expression of a bacterial chitinase leads to improved resistance of transgenic tobacco plants against fungal infection. Biopractice 1:33–40.

    Google Scholar 

  • James, J.T., and Dubery, I.A. 2001. Inhibition of polygalacturonase fromVerticillium dahliae by a polygalacturonase inhibiting protein from cotton. Phytochemistry 57:149–156.

    PubMed  CAS  Google Scholar 

  • Johnson, R. 1993. Durability of disease resistance in crops: some closing remarks about the topic and the symposium. In Durability of Disease Resistance, eds. Th. Jacobs, and J.E. Parlevliet, pp. 283–300. Dordrecht, The Netherlands: Kluwer Academic Publishers.

    Google Scholar 

  • Johnson, R. 1983. Genetic background of durable resistance. In Durable Resistance in Crops, eds. F. Lamberti, J.M. Aller, and N.A. van der Graaff, pp. 5–26. NewYork: Plenum Press.

    Google Scholar 

  • Jongedijk, E., Tigelaar, H., Van Roekel, J.S.C., Bres-Vloemans, S.A., Dekker, I., Van den Elzen, P.J.M., Cornelissen, B.J.C., and Melchers, L.S. 1995. Synergistic activity of chitinases and β-1,3-glucanases enhances fungal resistance in transgenic tomato plants. Euphytica 85:173–180.

    CAS  Google Scholar 

  • Kanrar, S., Venkateswari, J.C., Kirti, P.B., and Chopra, V.L. 2002. Transgenic expression of hevein, the rubber tree lectin, in Indian mustard confers protection against Alternaria brassicae. Plant Sci. 162:441–448.

    CAS  Google Scholar 

  • Keller, H., Pamboukdjian, N., Ponchet, M., Poupet, A., Delon, R., Verrier, J.L., Roby, D., and Ricci, P. 1999. Pathogen-induced elicitin production in transgenic tobacco generates a hypersensitive response and nonspecific disease resistance. Plant Cell 11:223–235.

    PubMed  CAS  Google Scholar 

  • Kellmann, J.-W., Kleinow, T., Engelhardt, K., Philipp, C., Wegener, D., Schell, J., and Schreier, P.H. 1996. Characterization of two class II chitinase genes from peanut, and expression studies in transgenic tobacco plants. Plant Mol. Biol. 30:351–358.

    PubMed  CAS  Google Scholar 

  • Kesarwani, M., Azam, M., Natarajan, K., Mehta, A., and Datta, A. 2000. Oxalate decarboxilase from Collybia velutipes. Molecular cloning and its overexpression to confer resistance to fungal infection in transgenic tobacco and tomato. J. Biol. Chem. 275:7230–7238.

    PubMed  CAS  Google Scholar 

  • Kikkert, J.R., Ali, G.S., Wallace, P.G., Reisch, B., and Reustle, G.M. 2000. Expression of a fungal chitinase in Vitis vinifera L., ‘Merlot’ and ‘Chardonnay’ plants produced by biolistic transformation. Acta Horticult. 528:297–303.

    CAS  Google Scholar 

  • Kim, J.K., Duan, X., Wu, R., Seok, S.J., Boston, R.S., Jang, I.C., Eun, M.Y., and Nahm, B.H. 1999. Molecular, and genetic analysis of transgenic rice plants expressing the maize ribosome-inactivating protein b-32 gene and the herbicide resistance bar gene. Mol. Breed. 5:85–94.

    CAS  Google Scholar 

  • Knoester, M., Van Loon, L.C., Van den Heuvel, J., Hennig, J., Bol, J.F., and Linthorst, H.J.M. 1998. Ethylene-insensitive tobacco lacks nonhost resistance against soil-borne fungi. Proc. Natl. Acad. Sci. USA 95:1933–1937.

    PubMed  CAS  Google Scholar 

  • Krishnamurthy, K. Balconi, C., Sherwood, J.E., and Giroux, M.J. 2001. Wheat puroindolines enhance fungal disease resistance in transgenic rice. Mol. Plant Microbe Interact. 14:1255–1260.

    PubMed  CAS  Google Scholar 

  • Krishnaveni, S., Jeoung, J.M., Muthukrishnan, S., and Liang, G.H. 2001. Transgenic sorghum plants constitutively expressing a rice chitinase gene show improved resistance to stalk rot. J. Genet. Breed. 55:151–158.

    CAS  Google Scholar 

  • Lagrimini, L.M., Vaughn, J., Erb, W.A., and Miller, S.A. 1993. Peroxidase overproduction in tomato: wound-induced polyphenol deposition and disease resistance. Hortcult. Sci. 28:218–221.

    CAS  Google Scholar 

  • Leah, R., Tommerup, H., Svendsen, I., and Mundy, J. 1991. Biochemical and molecular characterization of three barley seed proteins with antifungal properties. J. Biol. Chem. 266:1564–1573.

    PubMed  CAS  Google Scholar 

  • Leckband, G., and Lörz, H. 1998. Transformation and expression of a stilbene synthase gene of Vitis vinifera L. in barley and wheat for increased fungal resistance. Theor. Appl. Genet. 96:1004–1012.

    CAS  Google Scholar 

  • Lee, M.-W., Qi, M., and Yang, Y. 2001. A novel jasmonic acid-inducible rice myb gene associates with fungal infection and host cell death. Mol. Plant Microbe Interact. 14:527–535.

    PubMed  CAS  Google Scholar 

  • Mittler, R., and Lam, E. 1996. Sacrifice in the face of foes: pathogen-induced programmed cell death in plants. Trends Microbiol. 4:10–15.

    PubMed  CAS  Google Scholar 

  • Mittler, R., Shulaev, V., and Lam, E. 1995. Coordinated activation of programmed cell death and defense mechanisms in transgenic tobacco plants expressing a bacterial proton pump. Plant Cell 7:29–42.

    PubMed  CAS  Google Scholar 

  • Moran, P. 1998. Plant-mediated interactions between insects and fungal plant pathogen and the role of chemical responses to infection. Oecologia 115:513–530.

    Google Scholar 

  • Moyen, C., and Johannes, E. 1996. Systemin transiently depolarizes the tomato mesophyll cell membrane and antagonizes fusicoccin-induced extracellular acidification of mesophyll tissue. Plant Cell Environ. 19:464–470.

    CAS  Google Scholar 

  • Moyen, C., Hammond-Kosack, K.E., Jones, J., Knight, M.R., and Johannes, E. 1998. Systemin triggers an increase of cytoplasmic calcium in tomato mesophyll cells: Ca2+ mobilization from intra-and extracellular compartments. Plant Cell Environ. 21:1101–1111.

    CAS  Google Scholar 

  • Mur, L.A.J., Brown, I.R., Darby, R.M., Bestwick, C.S., Bi, Y.-M., Mansfield, J.W., and Draper, J. 1996. Salicylic acid potentiates defense gene expression in tissue exhibiting acquired resistance to pathogen attack. Plant J. 9:559–571.

    CAS  Google Scholar 

  • Mur, L.A., Brown, I.R., Darby, R.M., Bestwick, C.S., Bi, Y.-M., Mansfield, J.W., Draper, J. 2000. A loss of resistance to avirulent bacterial pathogens in tobacco is associated with the attenuation of a salicylic acid-potentiated oxidative burst. Plant J. 23:609–621.

    PubMed  CAS  Google Scholar 

  • Narváez-Vásquez, J., Florin-Christensen, J., and Ryan, C.A. 1999. Positional specificity of a phospholipase A activity induced by wounding, systemin, and oligosaccharide elicitors in tomato leaves. Plant Cell 11:2249–2260.

    PubMed  Google Scholar 

  • Niki, T., Mitsuhara, I., Seo, S., Ohtsubo, N., and Ohashi, Y. 1998. Antagonistic effect of salicylic acid and jasmonic acid on the expression of pathogenesis-related (PR) protein genes in wounded mature tobacco leaves. Plant Cell Physiol. 39:500–507.

    CAS  Google Scholar 

  • Norman-Setterblad, C., Vidal, S., and Palva, T.E. 2000. Interacting signal pathways control defense gene expression in Arabidopsis in response to cell wall-degrading enzymes from Erwinia carotovora. Mol. Plant Microbe Interact. 13:430–438.

    PubMed  CAS  Google Scholar 

  • O’Donnell, P.J., Calvert, C., Atzorn, R., Wasternack, C., Leyser, H.M.O., and Bowles, D.J. 1996. Ethylene as a signal mediating the wound response of tomato plants. Science 274:1914–1917.

    PubMed  CAS  Google Scholar 

  • Orozco-Cárdenas, M.L. 2000. Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl jasmonate. Plant Cell 13:179–191.

    Google Scholar 

  • Orozco-Cardenas, M., and Ryan, C.A. 1999. Hydrogen peroxide is generated systemically in plant leaves by wounding and systemin via the octadecanoid pathway. Proc. Natl. Acad. Sci. USA 96:6553–6557.

    PubMed  CAS  Google Scholar 

  • Orozco-Cardenas, M., McGurl, B., and Ryan, C.A. 1993. Expression of an antisense prosystemin gene in tomato plants reduces the resistance toward Manduca sexta larvae. Proc. Natl. Acad. Sci. USA 90:8273–8276.

    PubMed  CAS  Google Scholar 

  • Pearce, G., Strydom, D., Johnson, S., and Ryan, C.A. 1991. A polypeptide from tomato leaves induces wound-inducible proteinase inhibitor proteins. Science 253:895–898.

    CAS  Google Scholar 

  • Pearce, G., Moura, D.S., Stratmann, J., and Ryan, C.A. 2001. Production of multiple plant hormones from a single polyprotein precursor. Nature 411:817–820.

    PubMed  CAS  Google Scholar 

  • Peña-Cortés, H., Albrecht, T., Prat, S., Weiler, E.W., and Willmitzer, L. 1993. Aspirin prevents wound-induced gene expression in tomato leaves by blocking jasmonic acid biosynthesis. Planta 191:123–128.

    Google Scholar 

  • Penninckx, I.A.M.A., Eggermont, K., Terras, F.R.G., Thomma, B.P.H.J., De Samblanx, G.W., Buchala, A., Métraux, J.-P., Manners, J.M., and Brokaert, W.F. 1996. Pathogen-induced systemic activation of a plant defensin gene in Arabidopsis follows a salicylic acid-independent pathway. Plant Cell 8:2309–2323.

    PubMed  CAS  Google Scholar 

  • Penninckx, I.A.M.A., Thomma, B.P.H.J., Buchala, A., and Métraux, J.-P. 1998. Concomitant activation of jasmonate and ethylene response pathways is required for induction of a plant defensin gene in Arabidopsis. Plant Cell 10:2103–2113.

    PubMed  CAS  Google Scholar 

  • Pieterse, C.M.J., Van Wees, S.C.M., Hoffland, E., Van Pelt, J.A., and Van Loon, L.C. 1996. Systemic resistance in Arabidopsis induced by biocontrol bacteria is independent of salicylic acid accumulation and pathogenesis-related gene expression. Plant Cell 8:1225–1237.

    PubMed  CAS  Google Scholar 

  • Pieterse, C.M.J., Van Wees, S.C.M., Van Pelt, J.A., Knoester, M., Laan, R., Gerrits, H., Weisbeek, P.J., and Van Loon, L.C. 1998. A novel signaling pathway controlling induced systemic resistance in Arabidopsis. Plant Cell 10:1571–1580.

    PubMed  CAS  Google Scholar 

  • Pieterse, C.M.J., Van Pelt, J.A., Ton, J., Parchmann, S., Mueller, M.J., Buchala, A.J., Métraux, J.-P., and Van Loon, L.C. 2000. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis requires sensitivity to jasmonate and ethylene but is not accompanied by an increase in their production. Physiol. Mol. Plant Pathol. 57:123–134.

    CAS  Google Scholar 

  • Pieterse, C.M.J., Van Wees, S.C.M., Ton, J., Van Pelt, J.A., and Van Loon, L.C. 2002. Signaling in rhizobacteria-induced systemic resistance in Arabidopsis thaliana. Plant Biol. 4:535–544.

    CAS  Google Scholar 

  • Preston, C.A., Lewandowski, C., Enyedi, A.J., and Baldwin, I.T. 1999. Tobacco mosaic virus inoculation inhibits wound-induced jasmonic acid-mediated responses within but not between plants. Planta 209:87–95.

    PubMed  CAS  Google Scholar 

  • Raskin, I. 1992. Role of salicylic acid in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 43:439–463.

    CAS  Google Scholar 

  • Reymond, P., Weber, H., Damond, M., and Farmer, E.E. 2000. Differential gene expression in response to mechanical wounding and insect feeding in Arabidopsis. Plant Cell 12:707–719.

    PubMed  CAS  Google Scholar 

  • Rizhsky, L., and Mittler, R. 2001. Inducible expression of bacterio-opsin in transgenic tobacco and tomato plants. Plant Mol. Biol. 46:313–323.

    PubMed  CAS  Google Scholar 

  • Roberts, M.R., and Bowles, D.J. 1999. Fusicoccin, 14-3-3 proteins, and defense responses in tomato plants. Plant Physiol. 119:1243–1250.

    PubMed  CAS  Google Scholar 

  • Rojo, E., Titarenko, E., León, J., Berger, S., Vancanneyt, G., and Sánchez-Serrano, J.J. 1998. Reversible protein phosphorylation regulates jasmonic acid-dependent and-independent wound signal transduction pathways in Arabidopsis thaliana. Plant J. 13:153–165.

    PubMed  CAS  Google Scholar 

  • Rojo, E., León, J., and Sánchez-Serrano, J.J. 1999. Cross-talk between wound signalling pathways determines local versus systemic gene expression in Arabidopsis thaliana. Plant J. 20:135–142.

    PubMed  CAS  Google Scholar 

  • Ryals, J.A., Neuenschwander, U.H., Willits, M.G., Molina, A., Steiner, H.-Y., and Hunt, M.D. 1996. Systemic acquired resistance. Plant Cell 8:1809–1819.

    PubMed  CAS  Google Scholar 

  • Ryan, C.A. 1992. The search for the proteinase inhibitor-inducing factor, PIIF. Plant Mol. Biol. 19:123–133.

    PubMed  CAS  Google Scholar 

  • Ryan, C.A. 2000. The systemin signaling pathway: differential activation of plant defensive genes. Biochim. Biophys. Acta 1477:112–121.

    PubMed  CAS  Google Scholar 

  • Schaller, A. 1998. Action of proteolysis-resistant systemin analogues in wound signalling. Phytochemistry 47:605–612.

    PubMed  CAS  Google Scholar 

  • Schaller, A. 1999. Oligopeptide signalling and the action of systemin. Plant Mol. Biol. 40:763–769.

    PubMed  CAS  Google Scholar 

  • Schaller, A. 2001. Bioactive peptides as signal molecules in plant defense, growth, and development. In Bioactive Natural Products, ed. Atta-Ur-Rahman, Vol. 25, pp. 367–411. Amsterdam, The Netherlands: Elsevier.

    Google Scholar 

  • Schaller, A., and Frasson, D. 2001. Induction of wound response gene expression in tomato leaves by ionophores. Planta 212:431–435.

    PubMed  CAS  Google Scholar 

  • Schaller, A., and Oecking, C. 1999. Modulation of plasma membrane H+-ATPase activity differentially activates wound and pathogen defense responses in tomato plants. Plant Cell 11:263–272.

    PubMed  CAS  Google Scholar 

  • Schaller, A., and Ryan, C.A. 1995. Systemin—a polypeptide defense signal in plants. BioEssays 18:27–33.

    Google Scholar 

  • Schaller, A., Roy, P., and Amrhein, N. 2000. Salicylic acid-independent induction of pathogenesis-related gene expression by fusicoccin. Planta 210:599–606.

    PubMed  CAS  Google Scholar 

  • Scheel, D. 1998. Resistance response physiology and signal transduction. Curr. Opin. Plant Biol. 1:305–310.

    PubMed  CAS  Google Scholar 

  • Scheer, J.M., and Ryan, C.A. 1999. A 160 kDa systemin receptor on the cell surface of Lycopersicon peruvianum suspension cultured cells: kinetic analyses, induction by methyl jasmonate and photoaffinity labeling. Plant Cell 11:1525–1535.

    PubMed  CAS  Google Scholar 

  • Scheer, J.M., and Ryan, C.A. 2002. The systemin receptor SR160 from Lycopersicon perivianum is a member of the LRR receptor kinase family. Proc. Natl. Acad. Sci. USA 99:9585–9590.

    PubMed  CAS  Google Scholar 

  • Schenk, P.M., Kazal, K., Wilson, I., Anderson, J.P., Richmond, T., Somerville, S.C., and Manners, J.M. 2000. Coordinated plant defense responses in Arabidopsis revealed by microarray analysis. Proc. Natl. Acad. Sci. 97:11655–11660.

    PubMed  CAS  Google Scholar 

  • Schmele, I., and Kauss, H. 1990. Enhanced activity of the plasma membrane localized callose synthase in cucumber leaves with induced resistance. Physiol. Mol. Plant Pathol. 37:221–228.

    CAS  Google Scholar 

  • Schweizer, P., Buchala, A., and Métraux, J.-P. 1997. Gene expression patterns and levels of jasmonic acid in rice treated with the resistance inducer 2,6-dichloroisonicotinic acid. Plant Physiol. 115:61–70.

    PubMed  CAS  Google Scholar 

  • Seo, S., Okamoto, M., Seto, H., Ishizuka, K., Sano, H., and Ohashi, Y. 1995. Tobacco MAP kinase: A possible mediator in wound signal transduction pathways. Science 270:1988–1992.

    PubMed  CAS  Google Scholar 

  • Seo, S., Sano, H., and Ohashi, Y. 1999. Jasmonate-based wound signal transduction requires activation of WIPK, a tobacco miotogen-activated protein kinase. Plant Cell Physiol. 11:289–298.

    CAS  Google Scholar 

  • Shah, J., and Klessig, D.F. 1999. Salicylic acid: signal perception and transduction. In Biochemistry and Molecular Biology of Plant Hormones, eds. P.P.J. Hooykaas, M.A. Hall, and K.R. Libbenga, pp. 513–541. Amsterdam, The Netherlands: Elsevier Science.

    Google Scholar 

  • Shah, J., Tsui, F., and Klessig, D.F. 1997. Characterization of a salicylic acid-insensitive mutant (sai1 of Arabidopsis thaliana, identified in a selective screen utilizing the SA-inducible expression of the TMS2 gene. Mol. Plant Microbe Interact. 10:69–78.

    PubMed  CAS  Google Scholar 

  • Shelp, B.J., Bown, A.W., and McLean, M.D. 1999. Metabolism and function of gamma-aminobutyric acid. Trends Plant Sci. 4:446–452.

    PubMed  Google Scholar 

  • Shirasu, K., Nakajima, H., Rajasekhar, K., Dixon, R.A., and Lamb, C. 1997. Salicylic acid potentiates an agonist-dependent gain control that amplifies pathogen signals in the activation of defense mechanisms. Plant Cell 9:261–270.

    PubMed  CAS  Google Scholar 

  • Shumway, L.K., Yang, V.V., and Ryan, C.A. 1976. Evidence for the presence of proteinase inhibitor I in vacuolar bodies of plant cells. Planta 129:161–165.

    CAS  Google Scholar 

  • Siegrist, J., Orober, M., and Buchenauer, H. 2000. β-aminobutyric acid-mediated enhancement of resistance in tobacco to tobacco mosaic virus depends on the accumulation of salicylic acid. Physiol. Mol. Plant. Pathol. 56:95–106.

    CAS  Google Scholar 

  • Stankovic, B., and Davies, E. 1997. Intercellular communication in plants: electrical stimulation of proteinase inhibitor gene expression in tomato. Planta 202:402–406.

    CAS  Google Scholar 

  • Staswick, P.E., Su, W.P., and Howell, S.H. 1992. Methyl jasmonate inhibition of root growth and induction of a leaf protein are decreased in an Arabidopsis thaliana mutant. Proc. Natl. Acad. Sci. USA 89:6837–6840.

    PubMed  CAS  Google Scholar 

  • Staswick, P.E., Yuen, G.Y., and Lehman, C.C. 1998. Jasmonate signaling mutants of Arabidopsis are susceptible to the soil fungus Pythium irregulare. Plant J. 15:747–754.

    PubMed  CAS  Google Scholar 

  • Stennis, M.J., Chandra, S., Ryan, C.A., and Low, P. 1998. Systemin potentiates the oxidative burst in cultured tomato cells. Plant Physiol. 117:1031–1036.

    PubMed  CAS  Google Scholar 

  • Sticher, L., Mauch-Mani, B., and Métraux, J.-P. 1997. Systemic acquired resistance. Annu. Rev. Phytopath. 35:235–270.

    CAS  Google Scholar 

  • Stintzi, A., Weber, H., Reymond, P., Browse, J., and Farmer, E.E. 2001. Plant defense in the absence of jasmonic acid: the role of cyclopentenones. Proc. Natl. Acad. Sci. USA 98:12837–12842.

    PubMed  CAS  Google Scholar 

  • Stout, M.J., Fidantsef, A.L., Duffey, S.S., and Bostock, R.M. 1999. Signal interactions in pathogen and insect attack: systemic plant-mediated interactions between pathogens and herbivores of the tomato, Lycopersicon esculentum. Physiol. Mol. Plant Pathol. 54:115–130.

    CAS  Google Scholar 

  • Strassner, J., Schaller, F., Frick, U.B., Howe, G.A., Weiler, E.W., Amrhein, N., Macheroux, P., and Schaller, A. 2002. Characterization and cDNA-microarray expression analysis of 12-oxophytodienoate reductases reveals differential roles for octadecanoid biosynthesis in the local versus the systemic wound response. Plant J. 32:585–601.

    PubMed  CAS  Google Scholar 

  • Stratmann, J.W., and Ryan, C.A. 1997. Myelin basic protein kinase activity in tomato leaves is induced systemically by wounding and increases in response to systemin and oligosaccharide elicitors. Proc. Natl. Acad. Sci. USA 94:11085–11089.

    PubMed  CAS  Google Scholar 

  • Stratmann, J., Scheer, J., and Ryan, C.A. 2000. Suramin inhibits initiation of defense signaling by systemin, chitosan, and a β-glucan elicitor in suspension-cultured. Lycopersicon peruvianum cells. Proc. Natl. Acad. Sci. USA 97:8862–8867.

    PubMed  CAS  Google Scholar 

  • Stumm, D., and Gessler, C. 1986. Role of papillae in the induced systemic resistance of cucumbers against Colletotrichum lagenarium. Physiol. Mol. Plant Pathol. 29:405–410.

    Google Scholar 

  • Thain, J.F., Gubb, I.R., and Wildon, D.C. 1995. Depolarization of tomato leaf cells by oligogalacturonide elicitors. Plant Cell Environ. 18:211–214.

    CAS  Google Scholar 

  • Thaler, J.S., Fidantsef, A.L., Duffey, S.S., and Bostock, R.M. 1999. Trade-offs in plant defense against pathogens and herbivores: a field demonstration of chemical elicitors of induced resistance. J. Chem. Ecol. 25:1597–1609.

    CAS  Google Scholar 

  • Thomma, B.P.H.J., Eggermont, K., Penninckx, I.A.M.A., Mauch-Mani, B., Vogelsang, R., Cammue, B.P.A., and Broekaert, W.F. 1998. Separate jasmonate-dependent and salicylate-dependent defense-response pathways in Arabidopsis are essential for resistance to distinct microbial pathogens. Proc. Natl. Acad. Sci. USA 95:15107–15111.

    CAS  Google Scholar 

  • Thomma, B.P.H.J., Eggermont, K., Tierens, K.F.M., and Broekaert, W.F. 1999. Requirement of functional ethylene-insensitive 2 gene for efficient resistance of Arabidopsis to infection by Botrytis cinerea. Plant Physiol. 121:1093–1102.

    PubMed  CAS  Google Scholar 

  • Thulke, O.U., and Conrath, U. 1998. Salicylic acid has a dual role in the activation of defense-related genes in parsley. Plant J. 14:35–42.

    PubMed  CAS  Google Scholar 

  • Ton, J., Davison, S., Van Wees, S.C.M., Van Loon, L.C., and Pieterse, C.M.J. 2001. The Arabidopsis ISR1 locus controlling rhizobacteria-mediated induced systemic resistance is involved in ethylene signaling. Plant Physiol. 125:652–661.

    PubMed  CAS  Google Scholar 

  • Ton, J., De Vos, M., Robben, C., Buchala, A.J., Métraux, J.-P., Van Loon, L.C., and Pieterse, C.M.J. 2002a. Characterisation of Arabidopsis enhanced disease susceptibility mutants that are affected in systemically induced resistance. Plant J. 29:11–21.

    PubMed  CAS  Google Scholar 

  • Ton, J., Van Pelt, J.A., Van Loon, L.C., and Pieterse, C.M.J. 2002b. Differential effectiveness of salicylate-dependent and jasmonate/ethylene-dependent induced resistance in Arabidopsis. Mol. Plant Microbe Interact. 15:27–34.

    PubMed  CAS  Google Scholar 

  • Van Loon, L.C., and Van Strien, E.A. 1999. The families of pathogenesis-related proteins, their activities, and comparative analysis of PR-1 type proteins. Physiol. Mol. Plant Pathol. 55:85–97.

    Google Scholar 

  • Van Loon, L.C., Bakker, P.A.H.M., and Pieterse, C.M.J. 1998. Systemic resistance induced by rhizosphere bacteria. Annu. Rev. Phytopathol. 36:453–483.

    PubMed  Google Scholar 

  • Van Wees, S.C.M., Pieterse, C.M.J., Trijssenaar, A., Van’ t Westende, Y.A.M., Hartog, F., and Van Loon, L.C. 1997. Differential induction of systemic resistance in Arabidopsis by biocontrol bacteria. Mol. Plant Microbe Interact. 10:716–724.

    PubMed  Google Scholar 

  • Van Wees, S.C.M., Luijendijk, M., Smoorenburg, I., van Loon, L.C., and Pieterse, C.M.J. 1999. Rhizobacteria-mediated induced systemic resistance (ISR) in Arabidopsis is not associated with a direct effect on known defense-genes but stimulates the expression of the jasmonate-inducible gene ATVSP upon challenge. Plant Mol. Biol. 41:537–549.

    PubMed  Google Scholar 

  • Van Wees, S.C.M., De Swart, E.A.M., Van Pelt, J.A., Van Loon, L.C., and Pieterse, C.M.J. 2000. Enhancement of induced disease resistance by simultaneous activation of salicylate-and jasmonate-dependent defense pathways in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:8711–8716.

    PubMed  Google Scholar 

  • Vanacker, H., Lu, H., Rate, D.N., and Greenberg, J.T. 2001. A role for salicylic acid and NPR1 in regulating cell growth in Arabidopsis. Plant J. 28:209–216.

    PubMed  CAS  Google Scholar 

  • Vetsch, M., Janzik, I., and Schaller, A. 2000. Characterization of prosystemin expressed in the baculovirus/insect cell system reveals biological activity of the systemin precursor. Planta 211:91–91.

    PubMed  CAS  Google Scholar 

  • Vian, A., Henry-Vian, C., Schantz, R., Ledoigt, G., Frachisse, J.-M., Desbiez, M.-O., and Julien, J.-L. 1996. Is membrane potential involved in calmodulin gene expression after external stimulation in plants? FEBS Lett. 380:93–96.

    PubMed  CAS  Google Scholar 

  • Vidal, S., Ponce de Léon, I., Denecke, J., and Palva, T.E. 1997. Salicylic acid and the plant pathogen Erwinia carotovora induce defense genes via antagonistic pathways. Plant J. 11:115–123.

    CAS  Google Scholar 

  • Vijayan, P., Shockey, J., Levesque, C.A., Cook, R.J., and Browse, J. 1998. A role for jasmonate in pathogen defense of Arabidopsis. Proc. Natl. Acad. Sci. USA 95:7209–7214.

    PubMed  CAS  Google Scholar 

  • Walker-Simmons, M.K., and Ryan, C.A. 1977. Immunological identification of proteinase inhibitors I and II in isolated leaf vacuoles. Plant Physiol. 60:61–63.

    PubMed  CAS  Google Scholar 

  • Walling, L.L. 2000. The myriad plant responses to herbivores. J. Plant Growth Regul. 19:195–216.

    PubMed  CAS  Google Scholar 

  • Wang, C., Zien, C.A., Afitlhile, M., Welti, R., Hildebrand, D.F., and Wang, X. 2000. Involvement of phospholipase D in wound-induced accumulation of jasmonic acid in Arabidopsis. Plant Cell 12:2237–2246.

    PubMed  CAS  Google Scholar 

  • Weymann, K., Hunt, M., Uknes, S., Neuenschwander, U., Lawton, K., Steiner, H.-Y., and Ryals, J. 1995. Suppression and restauration of lesion formation in Arabidopsis lsd mutants. Plant Cell 7:2013–2022.

    PubMed  CAS  Google Scholar 

  • Xu, Y., Chang, P.-F-L., Liu, D., Narasimhan, M.L., Raghothama, K.G., Hasegawa, P.M., and Bressan, R.A. 1994. Plant defense genes are synergistically induced by ethylene and methyl jasmonate. Plant Cell 6:1077–1085.

    PubMed  CAS  Google Scholar 

  • Zehnder, G.W., Murphy, J.F., Sikora, E.J., and Kloepper, J.W. 2001. Application of rhizobacteria for induced resistance. Eur. J. Plant Pathol. 107:39–50.

    Google Scholar 

  • Ziegler, J., Keinänen, M., and Baldwin, I. 2001. Herbivore-induced allene oxide synthase transcripts and jasmonic acid in Nicotiana attenuata. Phytochemistry 58:729–738.

    PubMed  CAS  Google Scholar 

  • Zimmerli, L., Jakab, G., Métraux, J.P., and Mauch-Mani, B. 2000. Potentiation of pathogenspecific defense mechanisms in Arabidopsis by beta-aminobutyric acid. Proc. Natl. Acad. Sci. USA 97:12920–12925.

    PubMed  CAS  Google Scholar 

  • Zimmerli, L., Métraux, J.P., and Mauch-Mani, B. 2001. β-aminobutyric acid-induced protection of Arabidopsis against the necrotrophic fungus Botrytis cinerea. Plant Physiol. 126:517–523.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2006 Springer Science+Business Media, Inc.

About this chapter

Cite this chapter

Gilbert, J., Jordan, M., Somers, D.J., Xing, T., Punja, Z.K. (2006). Engineering Plants for Durable Disease Resistance. In: Tuzun, S., Bent, E. (eds) Multigenic and Induced Systemic Resistance in Plants. Springer, Boston, MA . https://doi.org/10.1007/0-387-23266-4_18

Download citation

Publish with us

Policies and ethics