Skip to main content

Interplay of Excitation and Inhibition in Auditory Brainstem Processing at Endbulbs of Held of the MNTB and AVCN

  • Conference paper

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abeles, M., and Goldstein, M. H., 1977, Multispike train analysis. Proc. IEEE 65: 762–773.

    Google Scholar 

  • Adams, J. C., and Mugnaini, E., 1990, Immunocytochemical evidence for inhibitory and disinhibitory circuits in the superior olive. Hear. Res. 49: 281–298.

    Article  PubMed  CAS  Google Scholar 

  • Altschuler, R. A., Betz, H., Parakkal, M. H., Reeks, K. A., and Wenthold, R. J., 1986, Identification of glycinergic synapses in the cochlear nucleus through immunocytochemical localization of the postsynaptic receptor. Brain Res. 369: 316–320.

    Article  PubMed  CAS  Google Scholar 

  • Altschuler, R. A., Juiz, J. M., Shore, S. E., Bledsoe, S. C., Helfert, R. H., and Wenthold, R. J., 1993, Inhibitory amino acid synapses and pathways in the ventral cochlear nucleus. In The mammalian cochlear nuclei: organization and function (M. A. Merchan, ed.), Plenum Press, New York.

    Google Scholar 

  • Banks, M. I., and Smith, P. H., 1992, Intracellular recordings from neurobiotin-labeled cells in brain slices of the rat medial nucleus of the trapezoid body. J. Neurosci. 12: 2819–2837.

    PubMed  CAS  Google Scholar 

  • Benson, C. G., and Potashner, S. J., 1990, Retrograde transport of [3H]glycine from the cochlear nucleus to the superior olive in the guinea pig. J. Comp. Neurol. 296: 415–426.

    Article  PubMed  CAS  Google Scholar 

  • Brand, A., Behrend, O., Marquardt, T., McAlpine, D., and Grothe, B., 2002, Precise inhibition is essential for microsecond interaural time difference coding, letters to nature 417: 543–547.

    CAS  Google Scholar 

  • Brawer, J. R., and Morest, D. K., 1975, Relations between auditory nerve endings and cell types in the cat’s anteroventral cochlear nucleus seen with the Golgi method and Nomarski optics. J. Comp. Neurol. 160: 491–506.

    Article  PubMed  CAS  Google Scholar 

  • Cant, N. B., 1991, Projections to the lateral and medial olivary nuclei from the spherical and globular bushy cells of the anteroventral cochlear nucleus. In The central auditory system (R. A. Altschuler, B. M. Clopton, R. P. Bobbin and D. W. Hoffman, eds.), Raven Press, New York, pp. 99–119.

    Google Scholar 

  • Cant, N. B., and Gaston, K. C. 1982, Pathways connecting the right and left cochlear nuclei. J. Comp. Neurol. 212: 313–326.

    Article  PubMed  CAS  Google Scholar 

  • Caspary, D. M., (1986), Cochlear Nuclei: Functional neuropharmacology of the principal cell types. In Neurobiology of hearing: The cochlea (R. A. Altschuler, D. W. Hoffman and R. P. Bobbin, eds.), Raven Press, New York, pp.303–332.

    Google Scholar 

  • Caspary, D. M., Backoff, P. M., Finlayson, P. G., and Palombi, P. S., 1994, Inhibitory inputs modulate discharge rate within frequency receptive fields of anteroventral cochlear nucleus neurons. J. Neurophysiol. 72: 2124–2133.

    PubMed  CAS  Google Scholar 

  • Caspary, D. M., Palombi, S. P., Backoff, P. M., Helfert, R. H., and Finlayson, P. G., 1993, GABA and Glycine inputs control discharge rate within the excitatory response area of primarylike and phaselocked AVCN neurons. In The mammalian cochlear nuclei: organization and function (M. A. Merchan, ed.), Plenum Press, New York.

    Google Scholar 

  • Caspary, D. M., Havey, D. C., and Faingold, C. L., 1983, Effects of acetylcholine on cochlear nucleus neurons. Exp. Neurol. 82: 491–498.

    Article  PubMed  CAS  Google Scholar 

  • Covey, E., Jones, D. R., and Casseday, J. H., 1984, Projections from the superior olivary complex to the cochlear nucleus in the tree shrew. J. Comp. Neurol. 226: 289–305.

    Article  PubMed  CAS  Google Scholar 

  • Ebert, U., and Ostwald, J., 1995, GABA can improve acoustic contrast in the rat ventral cochlear nucleus. Exp. Brain. Res. 104: 310–322.

    Article  PubMed  CAS  Google Scholar 

  • Ferragamo, M. J., Golding, N. L., and Oertel, D., 1998, Synaptic inputs to stellate cells in the ventral cochlear nucleus. J. Neurophysiol. 79: 51–63.

    PubMed  CAS  Google Scholar 

  • Forsythe, I. D., and Barnes-Davies, M., 1993, The binaural auditory pathway: excitatory amino acid receptors mediate dual timecourse excitatory postsynaptic currents in the rat medial nucleus of the trapezoid body. Proc. R. Soc. Lond. B. Biol Sci. 251: 151–157.

    CAS  Google Scholar 

  • Goldberg, J. M., and Brown, P. B., 1968, Functional organization of the dog superior olivary complex: an anatomical and electrophysiological study. J. Neurophysiol. 31: 639–656.

    PubMed  CAS  Google Scholar 

  • Grothe, B., 2003, New roles for synaptic inhibition in sound localization. Nat. Rev. Neurosci. 4: 540–550.

    Article  PubMed  CAS  Google Scholar 

  • Guinan, J. J., Jr., and Li, R. Y., 1990, Signal processing in brainstem auditory neurons which receive giant endings (calyces of Held) in the medial nucleus of the trapezoid body of the cat. Hear. Res. 49: 321–334.

    Article  PubMed  Google Scholar 

  • Guinan, J. J., Jr., Guinan, S. S. and Norris, B. E., 1972, Single auditory units in the superior olivary complex I: responses to sounds and classification based on physiological properties. Intern. J. Neurosci. 4: 101–120.

    Article  Google Scholar 

  • Havey, D. C., and Caspary, D. M., 1980, A simple technique for constructing ‘piggy-back’ multibarrel microelectrodes. Electroencephalogr. Clin. Neurophysiol. 48: 249–251.

    Article  PubMed  CAS  Google Scholar 

  • Helfert, R. H., Bonneau, J. M., Wenthold, R. J., and Altschuler, R. A., 1989, GABA and glycine immunoreactivity in the guinea pig superior olivary complex (published erratum appears in Brain. Res. 1990 Feb 12;509:180). Brain. Res. 501: 269–286.

    Article  PubMed  CAS  Google Scholar 

  • Joris, P. X., Carney, L. H., Smith, P. H., and Yin, T. C., 1994a, Enhancement of neural synchronization in the anteroventral cochlear nucleus. I. Responses to tones at the characteristic frequency. J. Neurophysiol. 71: 1022–1036.

    PubMed  CAS  Google Scholar 

  • Joris, P. X., Smith, P. H., and Yin, T. C., 1994b, Enhancement of neural synchronization in the anteroventral cochlear nucleus. II. Responses in the tuning curve tail. J. Neurophysiol. 71: 1037–1051.

    PubMed  CAS  Google Scholar 

  • Knipschild, M., Dörrscheidt, G. J., and Rübsamen, R., 1992, Setting complex tasks to single units in the avian auditory forebrain. I: Processing of complex artificial stimuli. Hear. Res. 57:216–230.

    Article  PubMed  CAS  Google Scholar 

  • Kössl, M., and Vater, M., 1989, Noradrenaline enhances temporal auditory contrast and neuronal timing precision in the cochlear nucleus of the mustached bat. J. Neurosci. 9: 4169–4178.

    PubMed  Google Scholar 

  • Kopp-Scheinpflug, C., Lippe, W. R., Dörrscheidt, G. J., and Rübsamen, R., 2002a, The medial nucleus of the trapezoid body in the gerbil is more than a relay: comparison of pre-and postsynaptic activity. J. Assoc. Res. Otolaryngol. 04: 1–23.

    Article  Google Scholar 

  • Kopp-Scheinpflug, C., Dehmel, S., Dörrscheidt, G. J., and Rübsamen, R., 2002b, Interaction of excitation and inhibition in anteroventral cochlear nucleus neurons that receive large endbulb synaptic endings. J. Neurosci. 22: 11004–11018.

    PubMed  CAS  Google Scholar 

  • Kulesza Jr., R. J., and Berrebi, A. S., 2000, Superior paraolivary nucleus of the rat is a GABAergic nucleus. J. Assoc. Res. Otolaryngol. 01: 255–269.

    Article  Google Scholar 

  • Kuwabara, N., and Zook, J. M., 1992, Projections to the medial superior olive from the medial and lateral nuclei of the trapezoid body in rodents and bats. J. Comp. Neurol. 324: 522–538.

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara, N., and Zook, J. M., 1991, Classification of the principal cells of the medial nucleus of the trapezoid body. J. Comp. Neurol. 314: 707–720.

    Article  PubMed  CAS  Google Scholar 

  • Manis, P. B., and Marx, S. O., 1991, Outward currents in isolated ventral cochlear nucleus neurons. J. Neurosci. 11: 2865–2880.

    PubMed  CAS  Google Scholar 

  • Nelken, I., and Young, E. D., 1994, Two separate inhibitory mechanisms shape the responses of dorsal cochlear nucleus type IV units to narrowband and wideband stimuli. J. Neurophysiol. 71: 2446–2462.

    PubMed  CAS  Google Scholar 

  • Oertel, D., and Wickesberg, R. E., 1993, Glycinergic inhibition in the cochlear nuclei: Evidence for tuberculoventral neurons being glycinergic. In The mammalian cochlear nuclei: organization and function (M. A. Merchan, ed.), Plenum Press, New York, pp. 225–237.

    Google Scholar 

  • Oertel, D., Wu, S. H., Garb, M. W., and Dizack, C., 1990, Morphology and physiology of cells in slice preparations of the posteroventral cochlear nucleus of mice. Journal of Comp. Neurol. 295: 136–154.

    Article  CAS  Google Scholar 

  • Osen, K. K., and Ottersen, O. P., 1996, Glutamat receptors in the medial nucleus of the trapezoid body. International Symposium on Acoustical Signal Processing in the Central Nervous System, Prauge, Abstr. 70.

    Google Scholar 

  • Osen, K. K., Ottersen, O. P., and Storm-Mathisen, J., 1990, Colocalization of glycine-like and GABA-like immunoreactivities: a semiquantitative study of individual neurons in the dorsal cochlear nucleus of cat. In Glycine neurotransmission (O. P. Ottersen and J. Storm-Mathisen, eds.), Wiley and Sons.

    Google Scholar 

  • Ostapoff, E. M., Benson, C. G., and Saint Marie, R. L., 1997, GABA-and glycine-immunoreactive projections from the superior olivary complex to the cochlear nucleus in guinea pig. J. Comp. Neurol. 381: 500–512.

    Article  PubMed  CAS  Google Scholar 

  • Ostapoff, E. M., Morest, D. K., and Potashner, S. J., 1990, Uptake and retrograde transport of [3H]GABA from the cochlear nucleus to the superior olive in the guinea pig. J. Chem. Neuroanat. 3: 285–295.

    PubMed  CAS  Google Scholar 

  • Pfeiffer, R. R., 1966a, Anteroventral cochlear nucleus: wave forms of extracellularly recorded spike potentials. Science 154: 667–668.

    Article  PubMed  CAS  Google Scholar 

  • Pfeiffer, R. R., 1966b, Classification of response patterns of spike discharges for units in the cochlear nucleus: tone-burst stimulation. Exp. Brain. Res. 1: 220–235.

    Article  PubMed  CAS  Google Scholar 

  • Pirsig, W., Pfalz, R., and Sadanaga, M., 1968, Postsynaptic auditory crossed efferent inhibition in the ventral cochlear nucleus and the blocking of it by strychnine nitrate (guinea pig). Kumamoto Med. J. 21: 75–82.

    PubMed  CAS  Google Scholar 

  • Roberts, R. C., and Ribak, C. E., 1987, GABAergic neurons and axon terminals in the brainstem auditory nuclei of the gerbil. J. Comp. Neurol. 258: 267–280.

    Article  PubMed  CAS  Google Scholar 

  • Rose, J. E., Kitzes, L. M., Gibson, M. M., and Hind, J. E., 1974, Observations on phase-sensitive neurons of anteroventral cochlear nucleus of the cat: nonlinearity of cochlear output. J. Neurophysiol. 37: 218–253.

    PubMed  CAS  Google Scholar 

  • Rothman, J. S., and Young, E. D., 1996, Enhancement of neural synchronization in computational models of ventral cochlear nucleus bushy cells. Audit. Neurosci. 2: 47–62.

    Google Scholar 

  • Rothman, J. S., Young, E. D., and Manis, P. B., 1993, Convergence of auditory nerve fibers onto bushy cells in the ventral cochlear nucleus: implications of a computational model. J. Neurophysiol., 70: 2562–2583.

    PubMed  CAS  Google Scholar 

  • Ryugo, D. K., and Sento, S., 1991, Synaptic connections of the auditory nerve in cats: relationship between endbulbs of held and spherical bushy cells. J. Comp. Neurol. 305: 35–48.

    Article  PubMed  CAS  Google Scholar 

  • Sachs, M. B., and Kiang, N. Y., 1968, Two-tone inhibition in auditory-nerve fibers. J. Acoust. Soc. Am. 43: 1120–1128.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie, R. L., Morest, D. K., and Brandon, C. J., 1989, The form and distribution of GABAergic synapses on the principal cell types of the ventral cochlear nucleus of the cat. Hear. Res. 42: 97–112.

    Article  PubMed  CAS  Google Scholar 

  • Saint Marie, R. L., Ostapoff, E. M., Benson, C. G., Morest, D. K., and Potashner, S. J., 1993, Non-cochlear projections to the ventral cochlear nucleus: are they mainly inhibitory? In The mammalian cochlear nuclei: organization and function (M. A. Merchan, ed.), Plenum Press, New York, pp. 121–131.

    Google Scholar 

  • Schofield, B. R., 1991, Superior paraolivaiy nucleus in the pigmented guinea pig: separate classes of neurons project to the inferior colliculus and the cochlear nucleus. J. Comp. Neurol. 312: 68–76.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, B. R., 1994, Projections to the cochlear nuclei from principal cells in the medial nucleus of the trapezoid body in guinea pigs. J. Comp. Neurol. 344: 83–100.

    Article  PubMed  CAS  Google Scholar 

  • Schofield, B. R., and Cant, N. B., 1996, Origins and targets of commissural connections between the cochlear nuclei in guinea pigs. J. Comp. Neurol. 375: 128–146.

    Article  PubMed  CAS  Google Scholar 

  • Shofner, W. P., and Young, E. D., 1985, Excitatory/inhibitory response types in the cochlear nucleus: relationships to discharge patterns and responses to electrical stimulation of the auditory nerve. J. Neurophysiol. 54: 917–939.

    PubMed  CAS  Google Scholar 

  • Siegel, S., and Castellan Jr., N. J., 1988, Nonparametric statistics for the behavioral sciences. McGraw-Hill Book Company.

    Google Scholar 

  • Smith, P. H., Joris, P. X., Carney, L. H., and Yin, T. C., 1991, Projections of physiologically characterized globular bushy cell axons from the cochlear nucleus of the cat. J. Comp. Neurol. 304: 387–407.

    Article  PubMed  CAS  Google Scholar 

  • Smith, P. H., Joris, P. X., and Yin, T. C., 1998, Anatomy and physiology of principal cells of the medial nucleus of the trapezoid body (MNTB) of the cat. J. Neurophysiol 79: 3127–3142.

    PubMed  CAS  Google Scholar 

  • Smith, P. H., and Rhode, W. S., 1989, Structural and functional properties distinguish two types of multipolar cells in the ventral cochlear nucleus. J. Comp. Neurol. 282: 595–616.

    Article  PubMed  CAS  Google Scholar 

  • Snyder, R. L., and Leake, P. A., 1988, Intrinsic connections within and between cochlear nucleus subdivisions in cat. J. Comp. Neurol. 278: 209–225.

    Article  PubMed  CAS  Google Scholar 

  • Sommer, I., Lingenhohl, K., and Friauf, E., 1993, Principal cells of the rat medial nucleus of the trapezoid body: an intracellular in vivo study of their physiology and morphology. Exp. Brain Res. 95: 223–239.

    Article  PubMed  CAS  Google Scholar 

  • Tsuchitani, C. 1997, Input from the medial nucleus of trapezoid body to an interaural level detector. Hear. Res. 105: 211–224.

    Article  PubMed  CAS  Google Scholar 

  • Turecek, R., and Trussell, L. O., 2001, Presynaptic glycine receptors enhance transmitter release at a mammalian central synapse. Nature 411: 587–590.

    Article  PubMed  CAS  Google Scholar 

  • Walsh, E. J., McGee, J., and Fitzakerley, J. L., 1990, GABA actions within the caudal cochlear nucleus of developing kittens. J. Neurophysiol. 64: 961–977.

    PubMed  CAS  Google Scholar 

  • Warr, W. B., and Beck, J. E., 1996, Multiple projections from the ventral nucleus of the trapezoid body in the rat. Hear. Res. 93: 83–101.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R. J., 1987, Evidence for a glycinergic pathway connecting the two cochlear nuclei: an immunocytochemical and retrograde transport study. Brain Res. 415: 183–187.

    Article  PubMed  CAS  Google Scholar 

  • Wenthold, R. J., Huie, D., Altschuler, R. A., and Reeks, K. A., 1987, Glycine immunoreactivity localized in the cochlear nucleus and superior olivary complex. Neurosci. 22: 897–912.

    Article  CAS  Google Scholar 

  • Wenthold, R. J., Zempel, J. M., Parakkal, M.H., Reeks, K. A., and Altschuler, R. A., 1986, Immunocytochemical localization of GABA in the cochlear nucleus of the guinea pig. Brain Res. 380:7–18.

    Article  PubMed  CAS  Google Scholar 

  • Wickesberg, R. E., and Oertel, D., 1990, Delayed, frequency-specific inhibition in the cochlear nuclei of mice: a mechanism for monaural echo suppression. J. Neurosci. 10: 1762–1768.

    PubMed  CAS  Google Scholar 

  • Wickesberg, R. E., and Oertel, D., 1988, Tonotopic projection from the dorsal to the anteroventral cochlear nucleus of mice. J. Comp. Neurol. 268: 389–399.

    Article  PubMed  CAS  Google Scholar 

  • Winer, J. A., Larue, D. T., and Pollak, G. D., 1995, GABA and glycine in the central auditory system of the mustache bat: structural substrates for inhibitory neuronal organization. J. Comp. Neurol. 355: 317–353.

    Article  PubMed  CAS  Google Scholar 

  • Winter, I. M., and Palmer, A. R., 1990, Responses of single units in the anteroventral cochlear nucleus of the guinea pig. Hear. Res. 44: 161–178.

    Article  PubMed  Google Scholar 

  • Winter, I. M., Robertson, D., and Yates, G. K., 1990, Diversity of characteristic frequency rate-intensity functions in guinea pig auditory nerve fibres. Hear. Res. 45: 191–202.

    Article  PubMed  CAS  Google Scholar 

  • Wu, S. H., and Kelly, J. B., 1995, Inhibition in the superior olivary complex: pharmacological evidence from mouse brain slice. J. Neurophysiol. 73; 256-269.

    Google Scholar 

  • Wu, S. H., and Oertel, D., 1986, Inhibitory circuitry in the ventral cochlear nucleus is probably mediated by glycine. J. Neurosci. 6: 2691–2706.

    PubMed  CAS  Google Scholar 

  • Yang, L., Monsivais, P., and Rubel, E. W., 1999, The superior olivary nucleus and its influence on nucleus laminaris: a source of inhibitory feedback for coincidence detection in the avian auditory brainstem. J. Neurosci. 19: 2313–2325.

    PubMed  CAS  Google Scholar 

  • Young, E. D., Robert, J. M., and Shofner, W. P., 1988, Regularity and latency of units in ventral cochlear nucleus: implications for unit classification and generation of response properties. J. Neurophysiol. 60:1–29.

    PubMed  CAS  Google Scholar 

  • Young, E. D., and Voigt, H. F., 1982, Response properties of type II and type III units in dorsal cochlear nucleus. Hear. Res. 6: 153–169.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science+Business Media, Inc.

About this paper

Cite this paper

Dehmel, S., Kopp-Scheinpflug, C., Rübsamen, R. (2005). Interplay of Excitation and Inhibition in Auditory Brainstem Processing at Endbulbs of Held of the MNTB and AVCN. In: Syka, J., Merzenich, M.M. (eds) Plasticity and Signal Representation in the Auditory System. Springer, Boston, MA . https://doi.org/10.1007/0-387-23181-1_2

Download citation

Publish with us

Policies and ethics