Skip to main content

Proteases and Synaptic Activity

  • Chapter
Proteases In The Brain

Part of the book series: Proteases In Biology and Disease ((PBAD,volume 3))

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

REFERENCES

  • Baranes D, Lederfein D, Huang YY, Chen M, Bailey CH, Kandel ER, 1998, Tissue plasminogen activator contributes to the late phase of LTP and to synaptic growth in the hippocampal mossy pathway. Neuron 21: 813–825.

    Article  CAS  PubMed  Google Scholar 

  • Barh BA, Staubi U, Xiao P, Chun D, Ji ZX, Esteban ET, Lynch G, 1997, Arg-Gly-Asp-Serselective adhesion and the stabilization of long-term potentiation: pharmacological studies and the characterization of candidate matrix receptor. J Neurosci. 17: 1320–1329.

    Google Scholar 

  • Bedford FK, Kittler JT, Muller E, Thomas P, Uren JM, Merlo D, Wisden W, Triller A, Smart TG, Moss SJ, 2001, GABAA receptor cell surface number and subunit stability are regulated by the ubiqutin-like protein Pic-1. Nature Neurosci. 4: 908–916.

    Article  CAS  PubMed  Google Scholar 

  • Burbea M, Dreier L, Dittman JS, Grunwald ME, Kaplan JM, 2002, Ubiquitin and AP180 regulate the abundance of GLR-1 glutamate receptors at postsynaptic elements in C. elegans. Neuron 35: 107–120.

    CAS  Google Scholar 

  • Buttner C, Sadtler S, Leyendecker A, Laube B, Griffon N, Betz H, Schmalzing G, 2001, Ubiqutination precedes internalization and proteolytic cleavage of plasma membranebound glycine receptors. J Biol Chem. 276: 42978–42985.

    Article  CAS  PubMed  Google Scholar 

  • Chain DG, Casadio A, Schacher S, Hegde AN, Valburn M, Yamamoto N, Goldgrg AL, Bartsch D, Kandel ER, Schwartz JH, 1999, Mechanism for generating the autonomous cAMP-dependent protein kinase required for long-term facilitation in Aplysia. Neuron 22: 147–156.

    CAS  Google Scholar 

  • Chan SL, Mattson MP, 1999, Caspase and calpain substrates: role in synaptic plasticity and cell death. J Neurosci Res. 58: 167–190.

    CAS  PubMed  Google Scholar 

  • Chen L, Huang LM, 1992, Protein kinase C reduces Mg2+ block of NMDA-receptor channels as a mechanism of modulation. Nature 356: 521–523.

    Article  CAS  PubMed  Google Scholar 

  • Chen ZL, Strickland S, 1997, Neuronal death in the hippocampus is promoted by plasmincatalized degradation of laminin. Cell 91: 917–925.

    CAS  PubMed  Google Scholar 

  • Cooper JD, Messer A, Feng AK, Chua-Couzens J, Mobley WC, 1999, Apparent loss and hypertrophy of interneurons in a mouse model of neuronal ceroid lipofuscinosis: evidence for partial response to insulin-like growth factor-1 treatment. J Neurosci. 19: 2556–2567.

    CAS  PubMed  Google Scholar 

  • Craig AM, 1998, Activity and synaptic receptor targeting: the long view. Neuron 21: 459–462.

    Article  CAS  PubMed  Google Scholar 

  • Davies B, Kearns IR, Ure J, Davies CH, Lathe R, 2001, Loss of hippocampal serine protease BSPl/neuropsin predisposes to global seizure activity. J Neurosci. 21: 6993–7000.

    CAS  PubMed  Google Scholar 

  • Dihanich M, Kaser M, Reinhard E, Cunningham D, Monard D, 1991, Prothrombin mRNA is expressed by cells of the nervous system. Neuron 6: 575–581.

    Article  CAS  PubMed  Google Scholar 

  • Ehlers MD, 2003, Activity level controls postsynaptic composition and signaling via the ubiquitin-proteasome system. Nature Neurosci. 6: 231–242.

    Article  CAS  PubMed  Google Scholar 

  • Fukuda T, Adachi E, Kawashima S, Yoshiya I, Hashimoto, PH, 1990, Immunohistochemical distribution of calcium-activated neutral proteinases and endogenous CANP inhibitor in the rabbit hippocampus. J Comp Neurol. 302: 100–109.

    Article  CAS  PubMed  Google Scholar 

  • Glazner GW, Chan SL, Lu C, Mattson MP, 2000, Caspase-mediated degradation of AMPA receptor subunits: a mechanism for preventing excitotoxic necrosis and ensuring apoptosis. J Neurosci. 20: 3641–3649.

    CAS  PubMed  Google Scholar 

  • Glickman JN, Kornfeld S, 1993, Mannose 6-phosphate-independent targeting of lysosomal enzymes in I-cell disease B lymphoblasts. J Cell Biol. 123: 99–108.

    Article  CAS  PubMed  Google Scholar 

  • Gingrich MB, Junge CE, Lyuboslavsky P, Traynelis SF, 2000, Potentiation of NMDA receptor function by serine protease thrombin. J Neurosci. 20: 4582–4595.

    CAS  PubMed  Google Scholar 

  • Gulyaeva NV, Kudryashoiv IE, Kudryashova IV, 2003, Caspase activity is essential for longterm potentiation. J Neurosci Res. 73: 853–864.

    Article  CAS  PubMed  Google Scholar 

  • Guttmann RP, Baker DL, Seifert KM, Cohen AS, Coulter DA, Lynch DR, 2001, Specific proteolysis of the NR2 subunit at multiple sites by calpain. J Neurochem. 78: 1083–1093.

    Article  CAS  PubMed  Google Scholar 

  • Hablitz JJ, 1984, Picrotoxin-induced epileptiform activity in hippocampus: role of endogenous versus synaptic factors. J Neurophysiol. 51: 1011–1027.

    CAS  PubMed  Google Scholar 

  • Haltia M, Herva R, Suopanki J, Baumann M, Tyyhelä J, 2001, Hippocampal lesions in the neuronal ceroid lipofuscinoses. Eur. J Paediat Neurol 5: 209–211.

    Google Scholar 

  • Hamakubo T, Kannagi R, Murachi T, Matsu A, 1986, Distribution of calpains I and II in rat brain. J Neurosci. 6: 3103–3111.

    CAS  PubMed  Google Scholar 

  • Harata N, Wu J, Ishibashi H, Ono K, Akaike N, 1997, Run-down of the response under experimental ischaemia in acutely dissociated CA1 pyramidal neurons of the rat. J Physiol. 500: 673–688.

    CAS  PubMed  Google Scholar 

  • Hegde AN, DiAntonio A, 2002, Ubiqutin and the synapse. Nature Rev Neurosci. 3: 854–861.

    CAS  Google Scholar 

  • Hegde AN, Inokuchi K, Pei W, Casadio A, Ghirardi M, Chain DG, Martin KC, Kandel ER, Schwartz JH, 1997, Ubiquitin C-terminal hydrolase is facilitation in Aplysia. Cell 89: 115–126.

    Article  CAS  PubMed  Google Scholar 

  • Hicke L, 2001, Protein regulation by monoubiquitin Nature Rev Mol Cell Biol. 2: 195–201.

    CAS  Google Scholar 

  • Hrabetova S, Sacktor TC, 1996, Bidirectional regulation of protein kinase Mu in the maintenance of long-term potentiation and long-term depression. J Neurosci. 16: 5324–5333.

    CAS  PubMed  Google Scholar 

  • Huang YY, Bach ME, Lipp HP, Zhuo M, Wolfer DP, Hawkins RD, Schoonjans L, Kandel ER, Godfraind JM, Mulligan R, Collen D, Carmeliet P. 1996, Mice lacking the gene encoding tissue-type plasminogen activator show a selective interference with late-phase long-term potentiation in both Schaffer collateral and mossy fiber pathways. Proc Natl Acad Sci USA 93: 8699–8704.

    CAS  PubMed  Google Scholar 

  • Jolly RD, Brown S, Das AM, Walkley SU, 2002, Mitochondrial dysfunction in neuronal ceroid-lipofuscinoses (Batten disease). Neurochem Int. 40: 565–571.

    Article  CAS  PubMed  Google Scholar 

  • Kaczmarek L, Lapinska-Dzwonek J, Szymczak S, 2002, Matrix metalloproteases in the adult brain physiology: a link between c-Fos, AP-1 and remodeling of neuronal connections? EMBO J 21: 6643–6648.

    Article  CAS  PubMed  Google Scholar 

  • Kageyama GH, Wong-Riley MT, 1982, Histochemical localization of cytochrome oxidase in the hippocampus: correlation with specific neuronal types and afferent pathways. Neuroscience 7: 237–2361.

    Article  Google Scholar 

  • Kingham PJ, Pocock JM, 2001, Microglial secreted cathepsin B induces neuronal apoptosis. J Neurochem. 76: 1475–1484.

    Article  CAS  PubMed  Google Scholar 

  • Koike M, Nakanishi H, Saftig P, Ezaki J, Isahara K, Ohsawa Y, Schulz-Schaeffer W, Watanabe T, Waguri S, Kametaka S, Shibata M, Yamamoto K, Kominami E, Peters C, von Figura K, Uchiyama Y, 2000, Cathepsin D deficiency induces lysosomal storage with ceroid lipofuscin in mouse CNS neurons. J Neurosci., 20: 6869–6906.

    Google Scholar 

  • Koike M, Shibata M, Ohsawa Y, Nakanishi H, Koga T, Kametaka S, Waguri S, Momoi T, Kominami E, Peter C, Figura K, Saftig P, Uchiyama Y, 2003, Involvement of two different cell death pathways in retinal atrophy of cathepsin D-deficient mice. Mol Cell Neurosci. 22: 146–161.

    Article  CAS  PubMed  Google Scholar 

  • Komai S, Matsuyama T, Matsumoto K, Kato K, Kobayashi M, Imamura K, Yoshida S, Ugawa S, Shiosaka S, 2000, Neuropsin regulates an early phase of Schaffer-collateral long-term potentiation in the murine hippocampus. Eur J Neurosci, 12: 1479–1486.

    Article  CAS  PubMed  Google Scholar 

  • Kornfeld S, 1992, Structure and function of the mannose 6-phosphate/insulinlike growth factor II receptors. Ann Rev Biochem. 61: 307–330.

    CAS  PubMed  Google Scholar 

  • Lopez-Salon M, et al., 2001, The ubiquitin-proteasome cascade is required for mammalian long-term memory formation. Eur J Neurosci. 14: 1820–1826.

    Article  CAS  PubMed  Google Scholar 

  • Lu X, Wyszynski M, Sheng M, Baudry M, 2001, Proteolytsis of glutamate receptorinteracting protein by calpain in rat brain: implication for synaptic plasticity. J Neurochem. 77: 1553–1560.

    Article  CAS  PubMed  Google Scholar 

  • Lynch G, Baudry M, 1984, The biochemistry of memory: A new and specific hypothesis. Science 224: 1057–1063.

    CAS  PubMed  Google Scholar 

  • Madani R, Hulo S, Toni N, Madani H, Steimer T, Muller D, Vassalli JD, 1999, Enhanced hippocampal long-term potentiation and learning by increased neuronal expression of tissue-type plasminogen activator in transgenic mice. EMBO J. 18: 3007–3012.

    Article  CAS  PubMed  Google Scholar 

  • March PA, Walkley SU, Wurzelmann S, 1995, Pathogenesis of brain dysfunction in Batten disease. Am J Med Genet 57: 204–212.

    Article  CAS  PubMed  Google Scholar 

  • Mattson MP, Dua W, 1999, “Apoptotic” biochemical cascade in synaptic compartments: roles in adaptive plasticity and neurodegenerative disorders. J Neurosci Res. 58: 152–166.

    CAS  PubMed  Google Scholar 

  • Matys T, Strickland S, 2003, Tissue plasminogen activator and NMDA receptor cleavage. Nature Med. 9: 371–372.

    CAS  PubMed  Google Scholar 

  • Mitchison HM, Bernard DJ, Greene NDE, Cooper JD, Junaid MA, Pullarkat RK, de Vos N, Breuning MH, Owens JW, Mobley WC, Gardiner RM, Lake BD, Taschner PEM, Nussbaum RL, 1999, Targeted distribution of the Cln3 gene provides a mouse model for Batten disease. Neurobiol. Disease 6: 321–334.

    CAS  Google Scholar 

  • Nakagami Y, Abe K, Nishiyama N, Matsuki N, 2000, Laminin degradation by plasmin regulates long-term potentiation. J Neurosci. 20: 2003–2010.

    CAS  PubMed  Google Scholar 

  • Nakanishi H, 2003a, Microglial proteases: strategic targets for neuroprotective agents. Curr Neuropharmacol. 1: 99–108.

    CAS  Google Scholar 

  • Nakanishi H, 2003b, Microglial functions and proteases. Mol Neurobiol. 27: 163–176.

    CAS  PubMed  Google Scholar 

  • Nakanishi H., 2003c, Neuronal and microglial cathepsins in aging and age-related diseases. Aging Res Rev. 2: 367–381.

    CAS  Google Scholar 

  • Nakanishi H, Tominaga K, Amano T, Hirotsu I, Inoue T, Yamamoto K, 1994, Age-related changes in activities and localizations of cathepsins D, E, B, and L in the rat brain tissues. Exp Neurol. 126: 119–128.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Tsukuba T, Koudou T, Tanaka T, Yamamoto K, 1993, Transient forebrain ischemia induces increased expression and specific localization of cathepsins E and D in rat hippocampus and neostriatum. Exp Neurol. 121: 215–223.

    Article  CAS  PubMed  Google Scholar 

  • Nakanishi H, Zhang J, Koike M, Nishioku T, Okamoto Y, Kominami E, von Figura K, Peters C, Yamamoto K, Saftig P, Uchiyama Y, 2001, Involvement of nitric oxide released from microglia-macrophages in pathological changes of cathepsin D-deficient mice. J Neurosci. 21: 7526–7533.

    CAS  PubMed  Google Scholar 

  • Nicole O, Docagne F, Ali C, Margaill I, Carmeliet P, MacKenzie ET, Vivien D, Buisson A, 2001, The proteolytic activity of tissue-plasminogen activator enhances NMDA receptormediated signaling. Nature Med 7: 59–64.

    CAS  PubMed  Google Scholar 

  • Oswald MJ, Kay G, Palmer DN, 2000, Changes in GABAergic neuron distribution in situ and in neuron cultures in ovine (OCL6) Batten disease. Eur J Paediat Neurol. 5: 135–142.

    Google Scholar 

  • Pawlak R, Strickland S, 2002, Tissue plasminoge activator and seizures: a clot-buster’s secret life. J Clin Invest. 109: 1529–1531.

    Article  CAS  PubMed  Google Scholar 

  • Pawlak R, Magarinos AM, Melchor J, McEwen B, Strickland S, 2003, Tissue plasminogen activator in the amygdala is critical for stress-induced anxiety-like behavior. Nature Neurosci. 6: 168–174.

    Article  CAS  PubMed  Google Scholar 

  • Perlmutter LS, Gall C, Baudry M, Lynch G, 1990, Distribution of calcium-activated protease calpain in the brain. J Comp Neurol. 296: 269–276.

    Article  CAS  PubMed  Google Scholar 

  • Qian Z, Gilbert ME, Colocos MA, Kandel ER, Kuhl D. 1993 Tissue-plasminogen activator is induced as an immediately-early gene during seizure, kindling and long-term potentiation. Nature 361: 453–457.

    CAS  PubMed  Google Scholar 

  • Reeves TM, Prins ML, Zhu J, Povlishock JT, Phillips LL, 2003, Matrix metalloprotease inhibition alters functional and structural correlates of deafferentation-induced sprouting in the dentate gyrus. J Neurosci. 23: 10182–10189.

    CAS  PubMed  Google Scholar 

  • Rogove A, Saio CJ, Keyt B, Strickland S, Tsirka SE, 1999, Activation of microglia reveals a non-proteolytyc cytokine function tissue plasminogen activator in the central nervous system. J Cell Sci. 112: 4007–4016.

    CAS  PubMed  Google Scholar 

  • Sallés FJ, Strickland S, 2002, Localization and regulation of the tissue plasminogen activator-plasmin system in the hippocampus. J Neurosci. 22: 2125–2134.

    PubMed  Google Scholar 

  • Sappino AP, Madani R, Huarte J, Belin D, Kiss JZ, Wohlwend A, Vassalli JD, 1993, Extracellular proteolysis in the adult murine brain. J Clin Invest 92: 679–685.

    CAS  PubMed  Google Scholar 

  • Shimizu C, Yoshioka S, Shibata M, Kato K, Momota Y, Matsumoto K, Shiosaka T, Midorikawa R., Kamachi T, Kawabe A, Shiosaka S, 1998, Characterization of recombinant and brain neuropsin-a plasticity-related serine protease. J Biol Chem. 273: 11189–11196.

    CAS  PubMed  Google Scholar 

  • Siao CJ, Fernandez SR, Tsirka SE, 2003, Cell type-specific roles for tissue plasminogen activator released by neurons or microglia after excitotoxic injury. J Neurosci. 23: 3234–3242.

    CAS  PubMed  Google Scholar 

  • Siao CJ, Tsirka SE, 2002, Tissue plasminogen activator mediates microglial activation via its finger domain through annexin II. J Neurosci. 22: 3352–3358.

    CAS  PubMed  Google Scholar 

  • Stelzer A, Kay AR, Wong RKS, 1988, function in hippocampal cells is maintained by phosphorylation factors. Science 241: 339–341.

    CAS  PubMed  Google Scholar 

  • Szklarczyk A, Lapinska J, Rylski M, McKay RDG, Kaczmarek L, 2002, Matrix metalloproteinase-9 undergoes expression and activation during dendritic remodeling in adult hippocampus. J Neurosci. 22: 920–930.

    CAS  PubMed  Google Scholar 

  • Terrell J, Shih S, Dunn R, Hicke L, 1998, A function for monoubiquitination in the internalization of a G-protein coupled receptor. Moll. Cell 1: 193–202.

    CAS  Google Scholar 

  • Tomimatsu Y, Idemoto S, Moriguchi S, Watanabe S, Nakanishi H, 2002, Proteases involved in long-term potentiation. Life Sci. 72: 355–361.

    Article  CAS  PubMed  Google Scholar 

  • Tsirka SE, 2002, Tissue plasminogen activator as a modulator of neuronal survival and function. Biochem Soci Transac. 30: 222–225.

    CAS  Google Scholar 

  • Tsirka SE, Gualandrils A, Amaral DG, Strickland S, 1995, Excitation-induced neuronal degeneration and seizure are mediated by tissue plasminogen activator. Nature 377: 340–344.

    Article  CAS  PubMed  Google Scholar 

  • Tsirka SE, Rogove AD, Bugge TH, Degen JL, Strickland S, 1997, An extracellular proteolytic cascade promotes neuronal degeneration in the mouse hippocampus. J Neurosci. 17: 543–552.

    CAS  PubMed  Google Scholar 

  • Verker E, Cambell V, Roche E, McEntee E, Lynch MA, 2000, Lipopolysaccharide inhibits long term potentiation in the rat dentate gyrus by activating caspase-1. J Biol Chem. 275: 6252–26258.

    Google Scholar 

  • Yepes M, Sandkvist M, Coleman TA, Moore E, Wu JY, Mitola D, Bugge TH, Lawrence DA, 2002, Regulatio of seizure spreading by neuroserpine and tissue-type plasminogen activator is plasminogen-independent. J Clin. Invest. 109: 1587–1578.

    Article  Google Scholar 

  • Willstätter R, Bamann E, 1929, Über die Proteasen der Magenschleimhaut. Erste Abhandlung über die Enzyme der Leukozyten. Hoppe-Seylers Z. Physiol. Chemie 180: 127–143.

    Google Scholar 

  • Wong RKS, Traub RD, 1983, synchronized burst discharge in disinhibited hippocampal slice. I. Initiation in CA2-CA3 region. J Neurophysiol. 49: 442–458.

    CAS  PubMed  Google Scholar 

  • Zhuo M, Holtzman DM, Li Y, Osaka H, DeMaro J, Jacquin M, Bu G, 2000, Role of tissue plasminogen activator receptor LRP in hippocampal long-term potentiation. J Neurosci. 20: 542–549.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2005 Springer Science + Business Media, Inc. Dordrecht

About this chapter

Cite this chapter

Nakanishi, H. (2005). Proteases and Synaptic Activity. In: Lendeckel, U., Hooper, N.M. (eds) Proteases In The Brain. Proteases In Biology and Disease, vol 3. Springer, Boston, MA. https://doi.org/10.1007/0-387-23101-3_12

Download citation

Publish with us

Policies and ethics