Skip to main content

P-Bifurcations in the Noisy Duffing-van der Pol Equation

  • Chapter
Stochastic Dynamics

Abstract

In this paper, we examine the stochastic version of the Duffing-van der Pol equation. As in [2], [8], [19], [16], we introduce both multiplicative and additive stochastic excitations to the original Duffingvan der Pol equation, i.e.

$$ \ddot x = \left( {\alpha + \sigma _1 \xi _1 } \right)x + \beta x + a\dot x^3 + bx^2 \dot x + \sigma _2 \xi _2 , $$

where, α and α are the bifurcation parameters, ξ 1 and ξ 2 are white noise processes with intensities σ 1 and σ 2, respectively. The existence of the extrema of the probability density function is presented for the stochastic system. The method used in this paper is essentially the same as that which was used in [19]. We first reduce the above system to a weakly perturbed conservative system by introducing an appropriate scaling. The corresponding unperturbed system is then studied. Subsequently, by transforming the variables and performing stochastic averaging, we obtain a one-dimensional Itô equation for the Hamiltonian H. The probability density function is found by solving the Fokker-Planck equation. The extrema of the probability density function are then calculated in order to study the so-called P-Bifurcation. The bifurcation diagrams for the stochastic version of the Duffing-van der Pol oscillator with a=−1.0, b=−1.0 over the whole (α, β)-plane are given. The related mean exit time problem is also studied.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

8 References

  1. L. Arnold. Six Lectures on Random Dynamical Systems, volume 1609 of Lecture Notes in Mathematics, pages 1–43. Springer-Verlag, New York, 1995.

    Google Scholar 

  2. L. Arnold, N. Sri Namachchivaya, and K. L. Schenk. Toward an understanding of stochastic Hopf bifurcations: A case study. Journal of Bifurcation and Chaos, 6(11):1947–1975, 1996.

    Article  MathSciNet  Google Scholar 

  3. F. Baras, M. M. Mansour, and C. Van den Broeck. Asymptotic properties of coupled nonlinear Langevin equations in the limit of weak noise, part ii: Transition to a limit cycle. Journal of Statistical Physics, 28(3):577–587, 1982.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Carr. Applications of Center Manifold Theory, volume 35 of Applied Mathematical Sciences. Springer-Verlag, New York, 1981.

    Google Scholar 

  5. E. H. Dowell. Nonlinear oscillations of a fluttering plate, part:i. AIAA Journal, 4(7):1267–1275, 1966.

    Article  Google Scholar 

  6. W. Ebeling, H. Herzel, W. Richert, and L. Schimansky-Geier. Influence of noise on Duffing-Van der Pol oscillators. ZAMM, 66(3):141–146, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  7. R. Graham. Hopf bifurcations with fluctuating control parameter. Physics Review A, 25:3234–3258, 1982.

    Article  Google Scholar 

  8. R. Graham. Macroscopic potentials, bifurcations and noise in dissipative systems. In F. Moss and P. V. E. McClintock, editors, Noise in Nonlinear Dynamical Systems, volume 1, pages 225–278. Cambridge, 1989.

    Google Scholar 

  9. J. Guckenheimer and P. Holmes. Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer-Verlag, New York, 1983.

    MATH  Google Scholar 

  10. P. J. Holmes and D. Rand. Phase portraits and bifurcations of the non-linear oscillator: \( \ddot x + \left( {\alpha + \gamma x^2 } \right)\dot x + \beta x + \delta x^3 = 0 \) . International Journal of Non-linear Mechanics, 15:449–458, 1980.

    Article  MATH  MathSciNet  Google Scholar 

  11. W. Horsthemke and R. Lefever. Phase transitions induced by external noise. Physics Letters A, 64:19–23, 1977.

    Article  Google Scholar 

  12. S. Karlin and H. M. Taylor. A Second Course in Stochastic Processes. Academic Press, New York, 1972.

    Google Scholar 

  13. R. Z. Khas’minskii. On the principles of averaging for Itô stochastic differential equations. Kybernetica, 4:260–279, 1968.

    Google Scholar 

  14. E. Knobloch and M. R. E. Proctor. Bifurcations in fluctuating systems. Journal of Fluid Mechanics, 108(3):291–297, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  15. R. Lefever and J. W. Turner. Sensitivity of Hopf bifurcation to external multiplicative noise. In C. Vidal and A. Pacault, editors, Non-Equilibrium Dynamics in Chemical Systems, pages 181–201. Springer-Verlag, Berlin, 1984.

    Google Scholar 

  16. K. R. Schenk-Hoppé. Bifurcation scenarios of the noisy Duffing-van der Pol oscillator. Nonlinear Dynamics, 11:255–274, 1996.

    Article  MathSciNet  Google Scholar 

  17. N. Sri Namachchivaya. Hopf bifurcation in the presence of both parametric and external stochastic excitation. ASME Journal of Applied Mechanics, 55(4):923–930, 1988.

    MATH  MathSciNet  Google Scholar 

  18. N. Sri Namachchivaya. Stochastic bifurcation. Applied Mathematics and Computation, 38:101–159, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  19. N. Sri Namachchivaya. Co-dimension two bifurcations in the presence of noise. ASME Journal of Applied Mechanics, 58(1):259–265, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  20. N. Sri Namachchivaya and Y. Liang. P-bifurcation in the stochastic version of the Duffing-van der Pol equation. Zeitschrift fur Angewandte Mathematik und Mechanik, 76(3):231–234, 1996.

    MATH  Google Scholar 

  21. N. Sri Namachchivaya and S. Talwar. Maximal Lyapunov exponents for stochastically perturbed co-dimension two bifurcations. Journal of Sound and Vibration, 69(3):349–372, 1993.

    Google Scholar 

  22. R. L. Stratonovich. Topics in the Theory of Random Noise, volume 2. Gordon and Breach, New York, 1967.

    MATH  Google Scholar 

  23. R. L. Stratonovich and Y. M. Romanovskii. Parametric effect of a random force on linear and nolinear vibrating systems. In R. L. S. P. I. Kuznetsov and V. I. Tikhonov, editors, Nonlinearity Transformations of Random Processes, pages 332–336. Pergamon, 1965.

    Google Scholar 

  24. M. G. Velarde and J. C. Antoranz. Control of a chaotic system. Physics Letters, 80A:220–226, 1980.

    MathSciNet  Google Scholar 

  25. E. C. Zeeman. On the classification of dynamical systems. Bull. London Math. Soc., 20:545–557, 1988.

    Article  MATH  MathSciNet  Google Scholar 

  26. E. C. Zeeman. Stability of dynamical systems. Nonlinearity, 1:115–155, 1988.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1999 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Liang, Y., Namachchivaya, N.S. (1999). P-Bifurcations in the Noisy Duffing-van der Pol Equation. In: Stochastic Dynamics. Springer, New York, NY. https://doi.org/10.1007/0-387-22655-9_3

Download citation

  • DOI: https://doi.org/10.1007/0-387-22655-9_3

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-98512-1

  • Online ISBN: 978-0-387-22655-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics