Skip to main content

Abstract

Intersection graphs, in general, have been receiving attention in graph theory, for some time. For example, there are specific papers on this subject, dated some sixty years ago. On the other hand, two books, [14] and [56], appeared recently where intersection graphs play a central role. The book [30] also deals with various classes of intersection graphs.

Partially supported by the Conselho Nacional de Desenvolvimento Científico e Tecnológico, CNPq, and Fundação de Amparo à Pesquisa do Estado do Rio de Janeiro, FAPERJ, Brazil

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. J. Akiyama, T. Hamada, and I. Yoshimura. On characterizations of the middle graph. TRU Mathematics, 11:35–39, 1975.

    MATH  MathSciNet  Google Scholar 

  2. M. O. Albertson and K. L. Collins. Duality and perfection for edges in cliques. Journal of Combinatorial Theory B, 36:298–309, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  3. R. Balakrishnan and P. Paulraja. Self-clique graphs and diameters of iterated clique graphs. Utilitas Mathematica, 29:263–268, 1986.

    MATH  MathSciNet  Google Scholar 

  4. E. Balas and C. S. Yu. On graphs with polynomially solvable maximum-weight clique problem. Networks, 19:247–253, 1989.

    Article  MATH  MathSciNet  Google Scholar 

  5. H.-J. Bandelt and E. Prisner. Clique graphs and Helly graphs. Journal of Combinatorial Theory B, 51:34–45, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  6. C. Berge. Hypergraphes. Gauthier-Villars, Paris, 1987.

    MATH  Google Scholar 

  7. A. Bondy, G. Durán, M. C. Lin, and J. L. Szwarcfiter. A sufficient condition for self-clique graphs (extended abstract). Electronic Notes in Discrete Mathematics, 2001. To appear.

    Google Scholar 

  8. C. F. Bornstein and J. L. Szwarcfiter. On clique convergent graphs. Graphs and Combinatorics, 11:213–220, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  9. C. F. Bornstein and J. L. Szwarcfiter. Iterated clique graphs with increasing diameters. Journal of Graph Theory, 28:147–154, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  10. C. F. Bornstein and J. L. Szwarcfiter. A characterization of clique graphs of rooted path graphs. In Y. Alavi, D. R. Lick, and A. Schwenck, editors, Proceedings of the 8th Quadriennial International Conference on Graph Theory, Algorithms, Combinatorics and Applications, pages 117–122. Western Michigan University, New Issues Press, 1999.

    Google Scholar 

  11. A. Brandstädt, V. D. Chepoi, and F. F. Dragan. Clique r-domination and clique r-packing problems on dually chordal graphs. SIAM Journal on Discrete Mathematics, 10:109–127, 1997.

    Article  MATH  MathSciNet  Google Scholar 

  12. A. Brandstädt, V. D. Chepoi, F. F. Dragan, and V. I. Voloshin. Dually chordal graphs. SIAM Journal on Discrete Mathematics, 11:437–455, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  13. A. Brandstädt, V. D. Chepoi, and F. F. Dragan. The algorithmic use of hypertree structure and maximum neighbourhood orderings. Discrete Applied Mathematics, 82:43–77, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  14. A. Brandstädt, V. B. Le, and J. Spinrad. Graph Classes: A Survey, volume 3 of SIAM Monographs on Discrete Mathematics and ApplicationsSIAM, Philadelphia, 1999.

    Book  MATH  Google Scholar 

  15. M. R. Cerioli. Grafos Clique de Arestas. PhD thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1999.

    Google Scholar 

  16. M. R. Cerioli and J. L. Szwarcfiter. A characterization of edge clique graphs. Ars Combinatoria, 2001.To appear.

    Google Scholar 

  17. G. J. Chang, M. Farber, and Z. Tuza. Algorithmic aspects of neighbourhood numbers. SIAM Journal on Discrete Mathematics, 6:24–29, 1991.

    Article  MathSciNet  Google Scholar 

  18. G. Chartrand, S. F. Kapoor, T. A. McKee, and F. Saba. Edge-clique graphs. Graphs and Combinatorics, 7:253–264, 1991.

    Article  MATH  MathSciNet  Google Scholar 

  19. B. L. Chen and K.-W. Lih. Diameters of iterated clique graphs of chordal graphs. Journal of Graph Theory, 14:391–396, 1990.

    Article  MATH  MathSciNet  Google Scholar 

  20. G. L. Chia. On self-clique graphs with given clique sizes. Discrete Mathematics, 212:185–189, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  21. L. Chong-Keang and P. Yee-Hock. On graphs without multicliqual edges. Journal of Graph Theory, 5:443–451, 1981.

    Article  MATH  MathSciNet  Google Scholar 

  22. E. J. Cockayne and S. T. Hedetnieme. Independence graphs. Congress us Numerantium, 10, 1974.

    Google Scholar 

  23. C. L. Deng and C. K. Lim. A class of clique-closed graphs. Discrete Mathematics, 127:131–137, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  24. M. C. Dourado, F. Protti, and J. L. Szwarefiter. The complexity of recognizing graphs with Helly defect one. In preparation.

    Google Scholar 

  25. F. F. Dragan. Centers of Graphs and the Helly Property PhD thesis, Moldava State University, Chisinău, Moldava, 1989. In russian.

    Google Scholar 

  26. G. Durán and M. C. Lin. Clique graphs of Helly circular-arc graphs. Ars Combinatoria, 2001. To appear.

    Google Scholar 

  27. P. Erdös, T. Gallai, and Z. Tuza. Covering the cliques of a graph with vertices. Discrete Mathematics, 108:279–289, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  28. F. Escalante. Über iterierte Clique-Graphen. Abhandlungender Mathematischen Seminar der Universität Hamburg, 39:59–68, 1973.

    MathSciNet  Google Scholar 

  29. F. Escalante and B. Toft. On clique-critical graphs. Journal of Combinatorial Theory B, 17:170–182, 1974.

    Article  MATH  MathSciNet  Google Scholar 

  30. M. C. Gohimbic. Algorithmic Graph Theory and Perfect Graphs. Academic Press, New York, 1980.

    Google Scholar 

  31. V. Guruswami and C. P. Rangan. Algorithmic aspects of clique transversal and clique-independent sets. Discrete Applied Mathematics, 100:183–202, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  32. M. Gutierrez. Tree-clique graphs. In J. L. Szwarcfiter, editor, Workshop Internacional de Combinatória, pages 7–26, Rio de Janeiro, 1996. Universidade Federal do Rio de Janeiro.

    Google Scholar 

  33. M. Gutierrez. Intersection graphs and clique application. Graphs and Combinatorics, 2001.To appear.

    Google Scholar 

  34. M. Gutierrez and J. Meidanis.Algebraic theory for the clique operator.Manuscript.

    Google Scholar 

  35. M. Gutierrez and J. Meidanis.Recognizing clique graphs of directed edge path graphs.Manuscript.

    Google Scholar 

  36. M. Gutierrez and J. Meidanis. On the clique operator. Lecture Notes in Computer Science, 1380:261–272, 1998. Proceedings of the 3rd Latin American Conference on Theoretical Informatics.

    Article  MathSciNet  Google Scholar 

  37. M. Gutierrez and L. Oubiña. Minimum proper interval graphs. Discrete Mathematics, 142:77–85, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  38. M. Gutierrez and R. Zucchello.Grafos ACI: Una generalización de los grafos de intervalos própios.Manuscript.

    Google Scholar 

  39. T. Hamada and I. Yoshimura. Traversability and connectivity of the middle graph of a graph. Discrete Mathematics, 14:247–255, 1976.

    Article  MATH  MathSciNet  Google Scholar 

  40. R. C. Hamelink. A partial characterization of clique graphs. Journal of Combinatorial Theory, 5:192–497, 1968.

    Article  MATH  MathSciNet  Google Scholar 

  41. S. Hazan and V. Neumann-Lara. Fixed points of posets and clique graphs. Order, 13:219–225, 1996.

    MATH  MathSciNet  Google Scholar 

  42. S. T. Hedetniemi and P. J. Slater. Line graphs of triangleless graphs and iterated clique graphs. Lecture Notes in Mathematics, 303:139–147, 1972.

    Article  MathSciNet  Google Scholar 

  43. B. Hedman. Clique graphs of time graphs. Journal of Combinatorial Theory B, 37:270–278, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  44. B. Hedman. Diameters of iterated clique graphs. Hadronic Journal, 9:273–276, 1986.

    MATH  MathSciNet  Google Scholar 

  45. B. Hedman. A polynomial algorithm for constructing the clique graph of a line graph. Discrete Applied Mathematics, 15:61–66, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  46. P. Hell. Rétractions de Graphes. PhD thesis, Université de Montreal, Montreal, Canada, 1972.

    Google Scholar 

  47. M. Knor, L. Niepel, and L. Soltes. Centers in line graphs. Math. Slovaca, 43:11–20, 1993.

    MATH  MathSciNet  Google Scholar 

  48. F. Larrión and V. Neumann-Lara.On clique divergent graphs with linear growth. Manuscript.

    Google Scholar 

  49. F. Larrión and V. Neumann-Lara. A family of clique divergent graphs with linear growth. Graphs and Combinatorics, 13:263–266, 1997.

    MATH  MathSciNet  Google Scholar 

  50. F. Larrión and V. Neumann-Lara. Clique divergent graphs with unbounded sequence of diameters. Discrete Mathematics, 197–198:491–501, 1999.

    Article  Google Scholar 

  51. F. Larrión and V. Neumann-Lara. Locally C6 graphs are clique divergent. Discrete Mathematics, 2000. To appear.

    Google Scholar 

  52. F. Larrión, V. Neumann-Lara, and M. A. Pizaña.Whitney triangulations, local girth and iterated clique graphs.Manuscript.

    Google Scholar 

  53. F. Larrión, V. Neumann-Lara, and M. A. Pizaña. Clique divergent clockwork graphs and partial orders (extended abstract). Electronic Notes in Discrete Mathematics, 2001.To appear.

    Google Scholar 

  54. C. K. Lim. A result on iterated clique graphs. Journal of the Australian Mathematical Society A, 32:289–294, 1982.

    Article  MATH  Google Scholar 

  55. C. L. Lucchesi, C. P. Mello, and J. L. Szwarcfiter. On clique-complete graphs. Discrete Mathematics, 183:247–254, 1998.

    Article  MATH  MathSciNet  Google Scholar 

  56. T. A. McKee and F. R. McMorris. Topics in Intersection Graph Theory, volume 2 of Monographs on Discrete Mathematics and Applications.SIAM, Philadelphia, 1999.

    Book  MATH  Google Scholar 

  57. C. P. Mello. Sobre Grafos Clique-Completos. PhD thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1992.

    Google Scholar 

  58. V. Neumann-Lara. On clique-divergent graphs. In Problèmes Combinatoires et Théorie des Graphes, pages 313–315, Orsay, France, 1978. Colloques Internationaux C.N.R.S. 260.

    Google Scholar 

  59. V. Neumann-Lara. Clique divergence in graphs. In Algebraic Methods in Graph Theory, volume 25, pages 563–569. Colloquia Mathematica Societatis János Bolyai, Szeged, Hungary, 1981.

    Google Scholar 

  60. V. Neumann-Lara. Clique divergence in graphs — some variations. Technical report, Instituto de Matematicas, Universidad Nacional Autonoma de Mexico, 1991.

    Google Scholar 

  61. L. Niepel, M. Knor, and L. Soltes. Distances in iterated line graphs. Ars Combinatoria, 43:193–202, 1996.

    MATH  MathSciNet  Google Scholar 

  62. R. Nowakowski and I. Rival. The smallest graph variety containing all paths. Discrete Mathematics, 43:223–234, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  63. R. Nowakowski and P. Winkler. Vertex-to-vertex porsuit of a graph. Discrete Mathematics, 43:235–239, 1983.

    Article  MATH  MathSciNet  Google Scholar 

  64. C. Peyrat, D. F. Rall, and P. J. Slater. On iterated clique graphs with increasing diameters. Journal of Graph Theory, 10:167–171, 1986.

    Article  MATH  MathSciNet  Google Scholar 

  65. M. A. Pizaña.The icosahedron is clique-divergent. Manuscript.

    Google Scholar 

  66. M. A. Pizaña. Distances and diameters on iterated clique graphs (extended abstract). Electronic Notes in Discrete Mathematics, 2001.To appear.

    Google Scholar 

  67. E. Prisner. Convergence of iterated clique graphs. Discrete Mathematics, 103:199–207, 1992.

    Article  MATH  MathSciNet  Google Scholar 

  68. E. Prisner. Hereditary clique-Helly graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 14:216–220, 1993.

    MATH  MathSciNet  Google Scholar 

  69. E. Prisner. A common generalization of line graphs and clique graphs. Journal of Graph Theory, 18:301–313, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  70. E. Prisner. Graph Dynamics. Pitman Research Notes in Mathematics 338, Longman, 1995.

    MATH  Google Scholar 

  71. E. Prisner. Graphs with few cliques. In Y. Alavi and A. Schwenk, editors, Proceedings of the 7th Quadrennial International Conference on Graph Theory, Algorithms, Combinatorics ans Applications, pages 945–956. Western Michigam University, John Wiley and Sons, Inc., 1995.

    Google Scholar 

  72. E. Prisner and J. L. Szwarcfiter. Recognizing clique graphs of directed and rooted path graphs. Discrete Applied Mathematics, 94:321–328, 1999.

    Article  MATH  MathSciNet  Google Scholar 

  73. F. Protti. Classes de Grafos Clique Inversos. PhD thesis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil, 1998.

    Google Scholar 

  74. F. Protti and J. L. Szwarcfiter. Clique-inverse graphs of K3-free and K4-free graphs. Journal of Graph Theory, 35:257–272, 2000.

    Article  MATH  MathSciNet  Google Scholar 

  75. F. Protti and J. L. Szwarcfiter. On clique graphs of linear size. Congress us Numerantium, 2000.To appear.

    Google Scholar 

  76. F. Protti and J. L. Szwarcfiter. Clique-inverse graphs of bipartite graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 2001. To appear.

    Google Scholar 

  77. A. Quilliot. Homomorphismes, points fixes, retractions et jeux des poursuite dans les graphes, les ensembles ordonnés et les espaces metriques. PhD thesis, Université de Paris, Paris, France, 1983.

    Google Scholar 

  78. A. Quilliot. On the Helly property working as a compactness criterion on graphs. Journal of Combinatorial Theory A, 40:186–193, 1985.

    Article  MATH  MathSciNet  Google Scholar 

  79. F. S. Roberts and J. H. Spencer. A characterization of clique graphs. Journal of Combinatorial Theory B, 10:102–108, 1971.

    Article  MATH  MathSciNet  Google Scholar 

  80. E. Sampathkumar and H. B. Walikar. On the complete graph of a graph. Abstract Graph Theory Newsletter, 3, 1978.

    Google Scholar 

  81. M. Skowronska and M. M. Syslo. An algorithm to recognize a middle graph. Discrete Applied Mathematics, 7:201–208, 1984.

    Article  MATH  MathSciNet  Google Scholar 

  82. P. J. Slater. Irreducible point independence numbers and independence graphs. Congressus Numerantium, 10:647–660, 1974.

    MathSciNet  Google Scholar 

  83. J. L. Szwarcfiter. Recognizing clique-Helly graphs. Ars Combinatoria, 45:29–32, 1997.

    MATH  MathSciNet  Google Scholar 

  84. J. L. Szwarcfiter and C. F. Bornstein. Clique graphs of chordal and path graphs. SIAM Journal on Discrete Mathematics, 7:331–336, 1994.

    Article  MATH  MathSciNet  Google Scholar 

  85. Z. Tuza. Covering all cliques of a graph. Discrete Mathematics, 86:117–126 1990.

    Article  MATH  MathSciNet  Google Scholar 

  86. W. D. Wallis and J. Wu. Squares, clique graphs and chordality. Journal of Graph Theory, 20:37–45, 1995.

    Article  MATH  MathSciNet  Google Scholar 

  87. W. D. Wallis and G. H. Zhang. On maximal clique irreducible graphs. Journal of Combinatorial Mathematics and Combinatorial Computing, 8:187–193, 1990.

    MATH  MathSciNet  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Szwarcfiter, J.L. (2003). A Survey on Clique Graphs. In: Reed, B.A., Sales, C.L. (eds) Recent Advances in Algorithms and Combinatorics. CMS Books in Mathematics / Ouvrages de mathématiques de la SMC. Springer, New York, NY. https://doi.org/10.1007/0-387-22444-0_5

Download citation

  • DOI: https://doi.org/10.1007/0-387-22444-0_5

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4684-9268-2

  • Online ISBN: 978-0-387-22444-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics