Skip to main content

Bayesian Decomposition

  • Chapter

Part of the book series: Statistics for Biology and Health ((SBH))

Abstract

Gene chips and gene expression microarrays offer the opportunity to study biological systems on a genome-wide basis, exploring the full transcriptional response in an experiment or therapy. Because of the complexity of living organisms, these transcriptional responses are complex, with multiple, overlapping groups of genes being expressed in response to continuing internal and external stimuli. In order to use expression measurements to identify upstream modifications in signaling pathways, it is necessary to disentangle these overlapping responses. Bayesian Decomposition provides a method of identifying such overlap and correctly assigning genes to multiple groups, allowing easier identification of pathway modifications. Here the results of the application of Bayesian Decomposition to cell cycle data are shown.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   129.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   169.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alison M, Sarraf C (1997). Understanding Cancer. Cambridge: Cambridge University Press.

    Google Scholar 

  • Alizadeh AA, Eisen MB, Davis RE, Ma C, Lossos IS, Rosenwald A, Boldrick JC, Sabet H, Tran T, Yu X, Powell JI, Yang L, Marti GE, Moore T, Hudson JJ, Lu L, Lewis DB, Tibshirani R, Sherlock G, Chan WC, Greiner TC, Weisenburger DD, Armitage JO, Warnke R, Levy R, Wilson W, Grever MR, Byrd JC, Botstein D, Brown PO, Staudt LM (2000). Distinct types of diffuse large b-cell lymphoma identified by gene expression profiling. Nature 403(6769):503–511.

    Article  Google Scholar 

  • Alter O, Brown PO, Botstein D (2000). Singular value decomposition for genomewide expression data processing and modeling. Proceedings of the National Academy of Sciences USA 97(18):10101–10106.

    Article  Google Scholar 

  • Besag J (1986). On the statistical analysis of dirty pictures. Journal of the Royal Statistical Society B 48:259–302.

    MATH  MathSciNet  Google Scholar 

  • Besag J, Green PJ (1993). Spatial statistics and bayesian computation. Journal of the Royal Statistical Society B 55:25–37.

    MATH  MathSciNet  Google Scholar 

  • Besag J, Green P, Higdon D, Mengersen K (1995). Bayesian computation and stochastic systems. Statistical Science 10(1):3–66.

    Article  MATH  MathSciNet  Google Scholar 

  • Bidaut G, Moloshok TD, Grant JD, Manion FJ, Ochs MF (2002). Bayesian decomposition analysis of gene expression in yeast deletion mutants. In: K Johnson, S Lin (eds.), Methods of Microarray Data Analysis II, 105–122. Boston: Kluwer Academic.

    Chapter  Google Scholar 

  • Bittner M, Meltzer P, Chen Y, Jiang Y, Seftor E, Hendrix M, Radmacher M, Simon R, Yakhini Z, Ben-Dor A, Sampas N, Dougherty E, Wang E, Marincola F, Gooden C, Lueders J, Glatfelter A, Pollock P, Carpten J, Gillanders E, Leja D, Dietrich K, Beaudry C, Berens M, Alberts D, Sondak V (2000). Molecular classification of cutaneous malignant melanoma by gene expression profiling. Nature 406(6795):536–540.

    Article  Google Scholar 

  • Brown MP, Grundy WN, Lin D, Cristianini N, Sugnet CW, Furey TS, Ares MJ, Haussler D (2000). Knowledge-based analysis of microarray gene expression data by using support vector machines. Proceedings of the National Academy of Sciences USA 97(1):262–267.

    Article  Google Scholar 

  • Claverie JM (1999). Computational methods for the identification of differential and coordinated gene expression. Human Molecular Genetics 8(10):1821–1832.

    Article  Google Scholar 

  • Cooper GM (1992). Elements of Human Cancer. Boston: Jones and Bartlett Publishers.

    Google Scholar 

  • Costanzo MC, Crawford ME, Hirschman JE, Kranz JE, Olsen P, Robertson LS, Skrzypek MS, Braun BR, Hopkins KL, Kondu P, Lengieza C, Lew-Smith JE, Tillberg M, Garrels JI (2001). Ypd, pombepd and wormpd: model organism volumes of the bioknowledge library, an integrated resource for protein information. Nucleic Acids Research 29(1):75–79.

    Article  Google Scholar 

  • Costanzo MC, Hogan JD, Cusick ME, Davis BP, Fancher AM, Hodges PE, Kondu P, Lengieza C, Lew-Smith JE, Lingner C, Roberg-Perez KJ, Tillberg M, Brooks JE, Garrels JI (2000). The yeast proteome database (ypd) and caenorhabditis elegans proteome database (wormpd): Comprehensive resources for the organization and comparison of model organism protein information. Nucleic Acids Research 28(1):73–76.

    Article  Google Scholar 

  • D’Haeseleer P, Liang S, Somogyi R (2000). Genetic network inference: from coexpression clustering to reverse engineering. Bioinformatics 16(8):707–726.

    Article  Google Scholar 

  • Eisen MB, Spellman PT, Brown PO, Botstein D (1998). Cluster analysis and display of genome-wide expression patterns. Proceedings of the National Academy of Sciences USA 95(25):14863–14868.

    Article  Google Scholar 

  • Geman S, Geman D (1984). Stochastic relaxation, Gibbs distributions, and the bayesian restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence PAMI-6(6):721–741.

    Article  Google Scholar 

  • Getz G, Levine E, Domany E (2000). Coupled two-way clustering analysis of gene microarray data. Proceedings of the National Academy of Sciences USA 97(22):12079–12084.

    Article  Google Scholar 

  • Golemis EA, Ochs MF, Pugacheva EN (2001). Signal transduction driving technology driving signal transduction: Factors in the design of targeted therapies. Journal of Cellular Biochemistry Supplement 37:42–52.

    Article  Google Scholar 

  • Golub TR, Slonim DK, Tamayo P, Huard C, Gaasenbeek M, Mesirov JP, Coller H, Loh ML, Downing JR, Caligiuri MA, Bloomfield CD, Lander ES (1999). Molecular classification of cancer: Class discovery and class prediction by gene expression monitoring. Science 286(5439):531–537.

    Article  Google Scholar 

  • Grenander U, Miller MI (1994). Representations of knowledge in complex systems. Journal of the Royal Statistical Society B 56:549–603.

    MATH  MathSciNet  Google Scholar 

  • Hastings W (1970). Monte Carlo sampling methods using Markov chains and their applications. Biometrika 57:97–109.

    Article  MATH  Google Scholar 

  • Heyer LJ, Kruglyak S, Yooseph S (1999). Exploring expression data: identification and analysis of coexpressed genes. Genome Research 9(11):1106–1115.

    Article  Google Scholar 

  • Hirota S (2001). Gastrointestinal stromal tumors: their origin and cause. International Journal of Clinical Oncology 6(1):1–5.

    Article  Google Scholar 

  • Hirota S, Isozaki K, Moriyama Y, Hashimoto K, Nishida T, Ishiguro S, Kawano K, Hanada M, Kurata A, Takeda M, Muhammad Tunio G, Matsuzawa Y, Kanakura Y, Shinomura Y, Kitamura Y (1998). Gain-of-function mutations of c-kit in human gastrointestinal stromal tumors. Science 279(5350):577–580.

    Article  Google Scholar 

  • Hughes TR, Marton MJ, Jones AR, Roberts CJ, Stoughton R, Armour CD, Bennett HA, Coffey E, Dai H, He YD, Kidd MJ, King AM, Meyer MR, Slade D, Lum PY, Stepaniants SB, Shoemaker DD, Gachotte D, Chakraburtty K, Simon J, Bard M, Friend SH (2000). Functional discovery via a compendium of expression profiles. Cell 102(1):109–126.

    Article  Google Scholar 

  • Ideker T, Thorsson V, Siegel AF, Hood LE (2000). Testing for differentially-expressed genes by maximum-likelihood analysis of microarray data. Journal of Computational Biology 7(6):805–817.

    Article  Google Scholar 

  • Kerr MK, Afshari CA, Bennett L, Bushel P, Martinez J, Walker NJ, Churchill GA (2002). Statistical analysis of a gene expression microarray experiment with replication. Statistica Sinica 12(1):203–218.

    MATH  MathSciNet  Google Scholar 

  • Kerr MK, Churchill GA (2001). Bootstrapping cluster analysis: assessing the reliability of conclusions from microarray experiments. Proceedings of the National Academy of Sciences USA 98(16):8961–8965.

    Article  MATH  Google Scholar 

  • Kerr MK, Martin M, Churchill GA (2000). Analysis of variance for gene expression microarray data. Journal of Computational Biology 7(6):819–837.

    Article  Google Scholar 

  • Kirkpatrick S, Gelatt CD, Vecchi MP (1983). Optimization by simulated annealing. Science 220:671–680.

    Article  MATH  MathSciNet  Google Scholar 

  • Labadie C, Lee JH, Vetek G, Springer Jr, CS (1994). Relaxographic imaging. Journal of Magnetic Resonance B 105(2):99–112.

    Article  Google Scholar 

  • Lawley DN, Maxwell AE (1971). Factor analysis as a statistical method. New York: American Elsevier, 2nd edition.

    MATH  Google Scholar 

  • Lee DD, Seung HS (1999). Learning the parts of objects by non-negative matrix factorization. Nature 401(6755):788–791.

    Article  Google Scholar 

  • Lukashin AV, Fuchs R (2001). Analysis of temporal gene expression profiles: Clustering by simulated annealing and determining the optimal number of clusters. Bioinformatics 17(5):405–414.

    Article  Google Scholar 

  • Macdonald F, Ford CHJ (1997). Molecular Biology of Cancer. Oxford: BIOS Scientific Publishers, Ltd.

    Google Scholar 

  • Manson McGuire A, Church GM (2000). Predicting regulons and their cis-regulatory motifs by comparative genomics. Nucleic Acids Research 28(22):4523–4530.

    Article  Google Scholar 

  • Metropolis N, Rosenbluth A, Rosenbluth M, Teller A, Teller E (1953). Equations of state calculations by fast computing machines. Journal of Chemical Physics 21:1087–1091.

    Article  Google Scholar 

  • Moloshok TD, Klevecz RR, Grant JD, Manion FJ, Speier WI, Ochs MF (2002). Application of bayesian decomposition for analysing microarray data. Bioinformatics 18(4):566–575.

    Article  Google Scholar 

  • Ochs MF, Stoyanova RS, Arias-Mendoza F, Brown TR (1999). A new method for spectral decomposition using a bilinear bayesian approach. Journal of Magnetic Resonance 137(1):161–176.

    Article  Google Scholar 

  • Ochs MF, Stoyanova RS, Brown TR, Rooney WD, Springer Jr. CS (2001). A Bayesian Markov chain Monte Carlo solution of the bilinear problem. In: JT Rychert, GJ Erickson, CR Smith (eds.), Bayesian Inference and Maximum Entropy Methods in Science and Engineering: 19th International Workshop, 274–284. Melville: American Institute of Physics.

    Google Scholar 

  • Posas F, Takekawa M, Saito H (1998). Signal transduction by map kinase cascades in budding yeast. Current Opinion in Microbiology 1(2):175–182.

    Article  Google Scholar 

  • Roberts CJ, Nelson B, Marton MJ, Stoughton R, Meyer MR, Bennett HA, He YD, Dai H, Walker WL, Hughes TR, Tyers M, Boone C, Friend SH (2000). Signaling and circuitry of multiple mapk pathways revealed by a matrix of global gene expression profiles. Science 287(5454):873–880.

    Article  Google Scholar 

  • Sebolt-Leopold JS (2000). Development of anticancer drugs targeting the map kinase pathway. Oncogene 19(56):6594–6599.

    Article  Google Scholar 

  • Sibisi S, Skilling J (1997). Prior distributions on measure space. Journal of the Royal Statistical Society, B 59(1):217–235.

    Article  MATH  MathSciNet  Google Scholar 

  • Spellman PT, Sherlock G, Zhang MQ, Iyer VR, Anders K, Eisen MB, Brown PO, Botstein D, Futcher B (1998). Comprehensive identification of cell cycleregulated genes of the yeast saccharomyces cerevisiae by microarray hybridization. Molecular Biology of the Cell 9(12):3273–3297.

    Article  Google Scholar 

  • Tamayo P, Slonim D, Mesirov J, Zhu Q, Kitareewan S, Dmitrovsky E, Lander ES, Golub TR (1999). Interpreting patterns of gene expression with self-organizing maps: Methods and application to hematopoietic differentiation. Proceedings of the National Academy of Sciences USA 96(6):2907–2912.

    Article  Google Scholar 

  • Utsugi A, Kumagai T (2001). Bayesian analysis of mixtures of factor analyzers. Neural Computing 13(5):993–1002.

    Article  MATH  Google Scholar 

  • Wessels LF, van Someren EP, Reinders MJ (2001). A comparison of genetic network models. Pacific Symposium on Biocomputing 508–519.

    Google Scholar 

  • Yeung KY, Haynor DR, Ruzzo WL (2001). Validating clustering for gene expression data. Bioinformatics 17(4):309–318.

    Article  Google Scholar 

  • Zhang H, Yu CY, Singer B, Xiong M (2001). Recursive partitioning for tumor classification with gene expression microarray data. Proceedings of the National Academy of Sciences USA 98(12):6730–6735.

    Article  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2003 Springer-Verlag New York, Inc.

About this chapter

Cite this chapter

Ochs, M.F. (2003). Bayesian Decomposition. In: Parmigiani, G., Garrett, E.S., Irizarry, R.A., Zeger, S.L. (eds) The Analysis of Gene Expression Data. Statistics for Biology and Health. Springer, New York, NY. https://doi.org/10.1007/0-387-21679-0_17

Download citation

  • DOI: https://doi.org/10.1007/0-387-21679-0_17

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-0-387-95577-3

  • Online ISBN: 978-0-387-21679-9

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics